Alpha transcranial alternating current stimulation as add-on to neglect training: a randomized trial.

Brain Commun

Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Visuospatial neglect is a common and debilitating condition following unilateral stroke, significantly impacting cognitive functioning and daily life. There is an urgent need for effective treatments that can provide clinically relevant and sustained benefits. In addition to traditional stroke treatment, non-invasive brain stimulation, such as transcranial alternating current stimulation, shows promise as a complementary approach to enhance stroke recovery. In the current study, we aimed to evaluate the additive effects of multi-session transcranial alternating current stimulation at alpha frequency when combined with visual scanning training in chronic stroke patients with visuospatial neglect. In this double-blind randomized controlled trial, we compared the effects of active transcranial alternating current stimulation at alpha frequency to sham (placebo) transcranial alternating current stimulation, both combined with visual scanning training. Both groups received eighteen 40-minute training sessions over a 6-week period. A total of 22 chronic visuospatial neglect patients participated in the study (active group = 12, sham group = 10). The median age was 61.0 years, with a median time since stroke of 36.1 months. We assessed the patients at six time-points: at baseline, after the first, ninth and eighteenth training sessions, as well as 1 week and 3 months following the completion of the combined neuromodulation intervention. The primary outcome measure was the change in performance on a visual search task, specifically the star cancellation task. Secondary outcomes included performance on a visual detection task, two line bisection tasks and three tasks evaluating visuospatial neglect in daily living. We found significantly improved visual search (primary outcome) and visual detection performance in the neglected side in the active transcranial alternating current stimulation group, compared to the sham transcranial alternating current stimulation group. We did not observe stimulation effects on line bisection performance nor in daily living. Time effects were observed on all but one outcome measures. Multi-session transcranial alternating current stimulation combined with visual scanning training may be a more effective treatment for chronic visuospatial neglect than visual scanning training alone. These findings provide valuable insights into novel strategies for stroke recovery, even long after the injury, with the aim of enhancing cognitive rehabilitation outcomes and improving the overall quality of life for individuals affected by this condition. : ClinicalTrials.gov; registration number: NCT05466487; https://clinicaltrials.gov/ct2/show/NCT05466487.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411215PMC
http://dx.doi.org/10.1093/braincomms/fcae287DOI Listing

Publication Analysis

Top Keywords

transcranial alternating
32
alternating current
32
current stimulation
32
visuospatial neglect
20
visual scanning
16
scanning training
16
combined visual
12
stimulation
10
current
9
alternating
8

Similar Publications

Correlated spiking has been widely found in large population of neurons and been linked to neural coding. Transcranial alternating current stimulation (tACS) is a promising non-invasive brain stimulation technique that can modulate the spiking activity of neurons. Despite its growing application, the tACS effects on the temporal correlation between spike trains are still not fully understood.

View Article and Find Full Text PDF

10-Hz tACS counteracts PASAT-related suppression of alpha power: A pilot study.

Neuroscience

September 2025

Institute of Physiology, Benemerita Universidad Autonoma de Puebla, 14 Sur 6301, Col. San Manuel, Apartado Postal 406, Puebla, Pue. CP 72570, Mexico. Electronic address:

Although it is well known that the amplitude of electroencephalographic (EEG) alpha waves typically decreases during cognitive tasks, no studies have examined whether this attenuation can be modulated with external interventions. In this pilot study, we investigated whether transcranial alternating current stimulation (tACS) at a fixed frequency of 10 Hz could counteract task-related alpha suppression in 10 participants receiving experimental (verum) stimulation and 8 participants receiving sham stimulation. As expected, a mental task involving the Paced Auditory Serial Addition Test (PASAT) significantly reduced alpha power.

View Article and Find Full Text PDF

An adjustable three-layer skull phantom with realistic ultrasound transmission properties.

Phys Med Biol

September 2025

Zhejiang University, Zijingang Campus of Zhejiang University,Yuhangtang Road No.866,Zhejiang Province, China 310058, Hangzhou, Zhejiang, 310058, CHINA.

Transcranial ultrasound research has garnered significant attention due to its non-invasive nature, absence of ionizing radiation, and portability, making it advantageous for both imaging and therapy. A critical aspect of advancing transcranial research lies in understanding the ultrasound transmission performance of the human skull. However, inherent variations in skull shape, physical parameters, and age-related changes pose challenges for comparative studies.

View Article and Find Full Text PDF

Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for cognitive research and clinical applications. However, it remains unclear how the spiking activity of cortical neurons is modulated by specific electric field (E-field) distributions. Here, we use a multi-scale computational framework that integrates an anatomically accurate head model with morphologically realistic neuron models to simulate the responses of layer 5 pyramidal cells (L5 PCs) to the E-fields generated by conventional M1-SO tACS.

View Article and Find Full Text PDF