Analysis of Biogenic Amines and Small Molecule Metabolites in Human Diabetic Wound Ulcer Exudate.

ACS Pharmacol Transl Sci

Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan48824, United States.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diabetic foot ulcers (DFUs) pose a significant challenge in wound care due to their chronic nature and impaired healing processes. This study examines the biogenic amines and small molecule metabolites present in DFU wound exudates to identify their potential roles in wound healing. Under an IRB-approved protocol, wound fluid samples were collected from 25 diabetic patients and analyzed using ultrahigh-pressure liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. The analysis identified 721 metabolites, with 402 confirmed through stringent criteria. Key metabolites significantly contributing to the wound exudates include betaine, lactic acid, carnitine, choline, creatine, and metformin (a widely used first-line treatment for type 2 diabetes). These molecules are known to influence wound healing processes, such as collagen synthesis, angiogenesis, inflammation modulation, and energy metabolism. Notably, the presence of drugs such as metformin and beclomethasone in the exudates suggests significant pharmacodynamic interactions that could influence wound healing. Specifically, we discovered that the combined use of insulin and metformin administered systemically significantly increased the concentration of metformin in the wound exudates (from 0.3% ± 0.0 to 3.1% ± 3.4; = 0.00 49). This study highlights the complexity of DFU exudate composition and underscores the potential for targeted metabolic profiling to develop personalized wound care strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406679PMC
http://dx.doi.org/10.1021/acsptsci.4c00418DOI Listing

Publication Analysis

Top Keywords

wound exudates
12
wound healing
12
wound
10
biogenic amines
8
amines small
8
small molecule
8
molecule metabolites
8
wound care
8
healing processes
8
influence wound
8

Similar Publications

Introduction: Traditional hydrogels with poor mechanical properties and lack of biological activities severely limit their application in wound therapy. Designing multifunctional hydrogels for monitoring and accelerating wound healing remains imperative.

Objectives: The aim of this study is to develop a multifunctional antifreeze ionic conductive Gel-TBA@organohydrogel with antibacterial, anti-inflammatory and antioxidant properties for monitoring and wound treatment.

View Article and Find Full Text PDF

Aim: To evaluate the effectiveness of the CARES-MFW (Clinical Augmented Reality Education Simulation for Malignant Fungating Wounds) app in enhancing nurses' knowledge and clinical reasoning in the care of MFWs.

Background: Malignant fungating wounds (MFWs) affect many patients with advanced cancer, with nearly 50 % dying within six months of diagnosis. These wounds often present with heavy exudate, pain, malodor and bleeding, leading to profound physical and psychosocial distress.

View Article and Find Full Text PDF

Hemostatic intervention at the bleeding site during early-phase wound management plays a crucial role in reducing trauma-induced complications and mortality, while advanced wound dressings facilitate hemorrhage control, exudate management, and antimicrobial protection to promote optimal healing outcomes. To address these issues, we developed a multifunctional collagen/silk fibroin/Mg(OH)₂ (Col/SF/Mg(OH)₂) composite sponge combining enhanced mechanical strength, rapid hemostasis, and broad-spectrum antibacterial activity. The incorporation of silk fibroin (SF) through covalent crosslinking increased the elastic modulus by 4.

View Article and Find Full Text PDF

Endoscopic vacuum therapy (EVT) offers an effective alternative for the treatment of anastomotic leakage. Current treatment options for leakage include conservative treatment, stent placement, or reoperation. However, conservative treatment often results in slow recovery and is frequently ineffective in severe cases.

View Article and Find Full Text PDF

Infected wounds remain a major clinical challenge due to bacterial invasion, which disrupts the natural healing cascade through excessive reactive oxygen species (ROS) generation, severe vascular damage, and persistent inflammation. Inspired by the catechol-rich adhesive domains of mussel foot proteins, we developed an extracellular matrix (ECM)-mimetic polyethylene glycol (PEG) hydrogel incorporating polydopamine (PDA)-functionalized zinc oxide nanoparticles (ZnONPs) for infected wound therapy. The amino acid-functionalized PEG hydrogel reproduces ECM-like properties to facilitate cell migration and efficient exudate management; however, its lack of intrinsic antimicrobial activity limits therapeutic efficacy.

View Article and Find Full Text PDF