Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ray parenchyma cells are involved in the initiation of heartwood formation. The position within a ray influences the timing of ray parenchyma cell differentiation and function; however, there is little information concerning the positional influence on the cellular changes of ray parenchyma cells from sapwood and heartwood. In this study, radial variations in morphology, size, and ultrastructure of ray parenchyma cells were studied by combined transmission electron microscopy and optical microscopy. Results showed that cellular traits of ray parenchyma cells in were all affected by both radial position in the secondary xylem and position within a ray. Specifically, radial variations in cellular traits were more evident in isolation cells, which were not adjacent to vessel elements. Both cell length and cell width/length ratio of isolation cells were bigger than contact cells, which contacted adjacent vessel elements via pits. Moreover, the secondary wall thickening and lignification of contact cells developed in the current-year xylem, much earlier than isolation cells. Secondary walls in contact cells were in a polylamellate structure with a protective layer on the inner side. No alteration in the ultrastructure of contact cells occurred in the sapwood-heartwood transition zone, except that most contact cells died. By contrast, in the transition zone, isolation cells still lived. A thin secondary wall began to deposit on the thick primary wall of isolation cells, with two isotropic layers on the inner side of the primary wall and secondary wall respectively being characteristic. Meanwhile, starch grains in isolation cells were depleted, and dark polyphenolic droplets lost their spherical shape and flowed together. Furthermore, the intercellular spaces of isolation cells became densified in the transition zone. Overall, cellular changes suggested that the positional information of ray parenchyma cells appeared to be an important factor in the transformation from sapwood to heartwood. Unlike contact cells, isolation cells were more elongated, specialized in radial transport, had a delayed formation of secondary walls, and were involved in the synthesis of heartwood substances. Our result promotes the elucidation of the involvement of xylem rays in heartwood formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405218PMC
http://dx.doi.org/10.3389/fpls.2024.1431818DOI Listing

Publication Analysis

Top Keywords

isolation cells
32
ray parenchyma
28
parenchyma cells
24
contact cells
24
cells
20
sapwood heartwood
12
secondary wall
12
transition zone
12
ray
9
transformation sapwood
8

Similar Publications

Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.

View Article and Find Full Text PDF

X-Linked Hypophosphatemia: Role of Fibroblast Growth Factor 23 on Human Skeletal Muscle-Derived Cells.

Calcif Tissue Int

September 2025

FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141, Florence, Italy.

X-linked hypophosphatemia (XLH) is a rare and progressive disease, due to inactivating mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. These pathogenic variants result in elevated circulating levels of fibroblast growth factor 23 (FGF23), responsible for the main clinical manifestations of XLH, such as hypophosphatemia, skeletal deformities, and mineralization defects. However, XLH also involves muscular disorders (muscle weakness, pain, reduced muscle density, peak strength, and power).

View Article and Find Full Text PDF

Electrical pulse generator for electroporation induction in myocytes: Compared effects on skeletal and cardiac cells.

Med Eng Phys

October 2025

Departament of Electronics and Biomedical Engineering, School of Electrical and Computer Engineering (DEEB/FEEC), University of Campinas (UNICAMP), Campinas, SP, Brazil; National Laboratory for Study of Cell Calcium (LabNECC), Center for Biomedical Engineering (CEB), UNICAMP, Campinas, SP, Brazil.

High-intensity, external electric fields (HIEF) have been used in research and therapy for abnormal generation/propagation of the cardiac electrical activity (e.g., defibrillation), and for promoting access of membrane-impermeant molecules into the cytosol through electropores.

View Article and Find Full Text PDF

Silencing CD151 Gene in Donor Triple-Negative Breast Cancer Cells Attenuates Exosome-Driven Functions of Recipient Cells.

Exp Cell Res

September 2025

Cancer Biology Laboratory, Dept of Life Sciences, GITAM School of Sciences, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India. Electronic address:

CD151 is a tetraspanin, abnormally expressed in triple negative breast cancer (TNBC). It is a prominent component of exosomes, facilitating the secretion of proteins that promote metastasis and drug resistance. We have previously demonstrated that silencing the CD151 gene reduces metastasis in TNBC.

View Article and Find Full Text PDF

Disseminated Mycobacterium simiae infection causing rhinosinusitis in a severely immunocompromised patient.

Int J Infect Dis

September 2025

SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa; Department of Microbiology and Biochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontei

Background: Mycobacterium simiae is a slow-growing environmental nontuberculous mycobacterium (NTM), commonly isolated from soil and water. M. simiae is not known to transmit zoonotically or via human-to-human contact; infection is presumed to occur through direct environmental exposure.

View Article and Find Full Text PDF