Hyperactive mTORC1 in striatum dysregulates dopamine receptor expression and odor preference behavior.

Front Neurosci

Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mechanistic target of rapamycin (mTOR) plays an important role in brain development and synaptic plasticity. Dysregulation of the mTOR pathway is observed in various human central nervous system diseases, including tuberous sclerosis complex, autism spectrum disorder (ASD), and neurodegenerative diseases, including Parkinson's disease and Huntington's disease. Numerous studies focused on the effects of hyperactivation of mTOR on cortical excitatory neurons, while only a few studies focused on inhibitory neurons. Here we generated transgenic mice in which mTORC1 signaling is hyperactivated in inhibitory neurons in the striatum, while cortical neurons left unaffected. The hyperactivation of mTORC1 signaling increased GABAergic inhibitory neurons in the striatum. The transgenic mice exhibited the upregulation of dopamine receptor D1 and the downregulation of dopamine receptor D2 in medium spiny neurons in the ventral striatum. Finally, the transgenic mice demonstrated impaired motor learning and dysregulated olfactory preference behavior, though the basic function of olfaction was preserved. These findings reveal that the mTORC1 signaling pathway plays an essential role in the development and function of the striatal inhibitory neurons and suggest the critical involvement of the mTORC1 pathway in the locomotor abnormalities in neurodegenerative diseases and the sensory defects in ASD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392874PMC
http://dx.doi.org/10.3389/fnins.2024.1461178DOI Listing

Publication Analysis

Top Keywords

inhibitory neurons
16
dopamine receptor
12
transgenic mice
12
mtorc1 signaling
12
preference behavior
8
diseases including
8
neurodegenerative diseases
8
studies focused
8
neurons striatum
8
neurons
7

Similar Publications

Excitatory glycine receptors control ventral hippocampus synaptic plasticity and anxiety-related behaviors.

Proc Natl Acad Sci U S A

September 2025

Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris 75005, France.

Excitatory glycine receptors (eGlyRs), composed of the glycine-binding NMDA receptor subunits GluN1 and GluN3A, have recently emerged as a novel neuronal signaling modality that challenges the traditional view of glycine as an inhibitory neurotransmitter. Unlike conventional GluN1/GluN2 NMDARs, the distribution and role of eGlyRs remain poorly understood. Here, we show that eGlyRs are highly enriched in the ventral hippocampus (VH) and confer distinct properties on this brain region.

View Article and Find Full Text PDF

Chronic treatment with fluoxetine, a widely prescribed selective serotonin reuptake inhibitor (SSRI), is known to promote neural plasticity. The role of fluoxetine in plasticity has been particularly tied to parvalbumin-positive interneurons, a key population of GABAergic neurons that regulate inhibitory tone and network stability. While our previous studies have highlighted fluoxetine-induced plasticity in the visual cortex and hippocampus, its cell-type-specific effects in the prefrontal cortex (PFC) remain unclear.

View Article and Find Full Text PDF

Examining circadian synaptic plasticity requires housing mice under different lighting conditions (light/dark cycle, LD 12:12, and constant darkness, DD), providing access to running wheels, and sacrificing them at four defined time points within 24 h-at the beginning and middle of the day/subjective day and at the beginning and middle of the night/subjective night. Brains are then properly fixed for transmission electron microscopy (TEM). The barrel cortex, with its precise somatotopic organization, provides an ideal model for such analysis.

View Article and Find Full Text PDF

The claustrum (CLA) is a thin and elongated brain structure that is located between the insula and lateral striatum and is implicated in a wide range of behaviors. It is characterized by its extensive synaptic connectivity with multiple cortical regions. While CLA projection neurons are glutamatergic, several studies have shown an inhibitory impact of CLA on its cortical targets, suggesting the involvement of inhibitory cortical interneurons.

View Article and Find Full Text PDF

In Vitro Evaluation of Amide-Linked Coumarin Scaffolds for the Inhibition of α‑Synuclein and Tau Aggregation.

ACS Omega

September 2025

Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States.

Alzheimer's disease (AD) and Parkinson's disease (PD) are the most prevalent neurodegenerative disorders characterized by continuous loss of functional neurons. The numbers of AD and PD patients will likely double by 2060 and 2040, reaching 13.9 and 1.

View Article and Find Full Text PDF