98%
921
2 minutes
20
Oral squamous cell carcinoma (OSCC) represents a prevalent head and neck malignancy with surgical intervention as the primary clinical option. Immunotherapy, particularly immune checkpoint blockade (ICB) targeting PD-1/PD-L1 shows great promise but is impeded by the immunosuppressive tumor microenvironment and low PD-L1 expression in OSCC. Herein, the "all-in-one" phototherapeutic nanoparticles (TSD NPs) are reported with balanced reactive oxygen species and photothermal conversion capacity for combined photoimmunotherapy and ICB immunotherapy against OSCC. A novel electron acceptor, 3-(dicyanomethylene)-2,3-dihydrobenzothiophene-1,1-dioxide (DTM), is introduced to develop the phototherapeutic agent with aggregation-induced emission (AIE) feature and NIR-II fluorescence centered at 1000 nm. Benefiting from the AIE feature and the DTM acceptor, the resultant TSD NPs also exhibit strong type I reactive oxygen species (ROS) generation and high photothermal conversion efficiency (45.3%), which can profoundly induce immunogenic cell death (ICD), activate cytotoxic T lymphocytes, and convert the immunosuppressive tumor microenvironment into an immune-supportive one. Additionally, TSD NPs upregulate the PD-L1 expression on OSCC cells, thus enhancing the efficacy of combined treatment with αPD-L1 ICB immunotherapy. This results show that the synergistic treatment of TSD NPs and αPD-L1 effectively eradicates solid OSCC tumors without adverse effects on normal tissues, proving a novel and promising strategy for OSCC management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202405470 | DOI Listing |
Sci Rep
September 2025
Management and Conservation of Soil and Water Laboratory, Federal University of Vicosa, Florestal Campus, Minas Gerais, Brazil.
Soil functions as the active force managing diverse biogeochemical processes in tropical forest ecosystems, including storing and recycling nutrients and decomposing organic matter. Anthropogenic activities, mainly deforestation on charcoal production, have substantially disrupted these processes, leading to notable changes in microbial activities, enzyme functions, and the availability and soil nutrient status of the derived savannah in southwestern Nigeria. While there is increasing recognition of charcoal's impact on soil properties, there remains a noticeable research gap in understanding its specific effects on some associated soil microbial properties, soil enzymes, and micronutrients in charcoal production sites.
View Article and Find Full Text PDFSmall
November 2024
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.