Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Current risk stratification tools for acute myocardial infarction (AMI) have limitations, particularly in predicting mortality. This study utilizes cardiac ultrasound radiomics (i.e., ultrasomics) to risk stratify AMI patients when predicting all-cause mortality.

Results: The study included 197 patients: (a) retrospective internal cohort (n = 155) of non-ST-elevation myocardial infarction (n = 63) and ST-elevation myocardial infarction (n = 92) patients, and (b) external cohort from the multicenter Door-To-Unload in ST-segment-elevation myocardial infarction [DTU-STEMI] Pilot Trial (n = 42). Echocardiography images of apical 2, 3, and 4-chamber were processed through an automated deep-learning pipeline to extract ultrasomic features. Unsupervised machine learning (topological data analysis) generated AMI clusters followed by a supervised classifier to generate individual predicted probabilities. Validation included assessing the incremental value of predicted probabilities over the Global Registry of Acute Coronary Events (GRACE) risk score 2.0 to predict 1-year all-cause mortality in the internal cohort and infarct size in the external cohort. Three phenogroups were identified: Cluster A (high-risk), Cluster B (intermediate-risk), and Cluster C (low-risk). Cluster A patients had decreased LV ejection fraction (P < 0.01) and global longitudinal strain (P = 0.03) and increased mortality at 1-year (log rank P = 0.05). Ultrasomics features alone (C-Index: 0.74 vs. 0.70, P = 0.04) and combined with global longitudinal strain (C-Index: 0.81 vs. 0.70, P < 0.01) increased prediction of mortality beyond the GRACE 2.0 score. In the DTU-STEMI clinical trial, Cluster A was associated with larger infarct size (> 10% LV mass, P < 0.01), compared to remaining clusters.

Conclusions: Ultrasomics-based phenogroup clustering, augmented by TDA and supervised machine learning, provides a novel approach for AMI risk stratification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403884PMC
http://dx.doi.org/10.1186/s44156-024-00057-wDOI Listing

Publication Analysis

Top Keywords

myocardial infarction
20
acute myocardial
8
risk stratification
8
all-cause mortality
8
internal cohort
8
external cohort
8
predicted probabilities
8
myocardial
5
infarction
5
cardiac ultrasomics
4

Similar Publications

Importance: Previous data suggest that the time changes associated with daylight savings time (DST) may be associated with an increased incidence of acute myocardial infarction (AMI).

Objective: To determine whether the incidence of patients presenting with AMI is greater during the weeks during or after DST and compare the in-hospital clinical events between the week before DST and after DST.

Design, Setting, And Participants: This cross-sectional study examined patients enrolled in the Chest Pain MI Registry from 2013 to 2022.

View Article and Find Full Text PDF

The outcome of percutaneous coronary intervention (PCI) compared to coronary artery bypass grafting (CABG) is still controversial for patients with left main coronary artery (LMCA) disease. This multicenter cohort study aimed to evaluate the clinical outcomes of LMCA disease patients who underwent PCI or CABG. We reviewed 875 consecutive patients diagnosed with LMCA disease between January 2009 and December 2020 who underwent coronary revascularization by PCI (n = 404) or CABG (n = 471).

View Article and Find Full Text PDF

In this review, we aimed to evaluate Sonothrombolysis when combined with primary percutaneous coronary intervention (pPCI) in STEMI patients with regard to improving cardiac function and clinical outcomes. This study primarily assesses short-term efficacy outcomes, while long-term impacts, such as mortality, were not evaluated. Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we searched four electronic databases (PubMed, Scopus, Cochrane Library, and Web of Science) to identify eligible studies reported up to November 2024.

View Article and Find Full Text PDF

Validation of angiography-based FFR in non-culprit vessels of patients presenting with STEMI.

Clin Res Cardiol

September 2025

Department of (Interventional) Cardiology, Thoraxcenter, Erasmus University Medical Center, Room Rg-628, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands.

Background: Fractional flow reserve (FFR) for non-culprit lesions (NCLs) in patients with ST-elevation myocardial infarction (STEMI) can be influenced by temporary changes in microvascular resistance. Angiography-derived vessel fractional flow reserve (vFFR) has been tested as a less-invasive alternative.

Aims: The FAST STEMI II study aimed to assess the diagnostic performance of acute-setting vFFR vs.

View Article and Find Full Text PDF

Ranolazine-Induced Type 1 Brugada Pattern.

JACC Case Rep

September 2025

Cardiovascular Diseases Section, Interdisciplinary Department of Medicine (DIM), University of Bari "Aldo Moro," Bari, Italy.

Background: Brugada syndrome (BrS) is a rare inherited arrhythmia disease carrying a variable risk of sudden cardiac death. Diagnosis requires the type 1 Brugada electrocardiographic pattern, which can either be spontaneous or induced by sodium channel-blocking drugs. Ranolazine is an antianginal drug acting on the late sodium current with emerging antiarrhythmic properties; no information is available on the safety of ranolazine use in patients with BrS.

View Article and Find Full Text PDF