Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Different materials have been used as wound dressings after vital pulp therapies. Some of them have limitations such as delayed setting, difficult administration, slight degree of cytotoxicity, crown discoloration and high cost. Therefore, to overcome these disadvantages, composite scaffolds have been used in regenerative dentistry. This study aims to construct and characterize the physicochemical behavior of a novel injectable alginate hydrogel loaded with different bioactive glass nanoparticles in various concentrations as a regenerative pulpotomy filling material.

Methods: Alginate hydrogels were prepared by dissolving alginate powder in alcoholic distilled water containing mesoporous bioactive glass nanoparticles (MBG NPs) or boron-doped MBG NPs (BMBG NPs) at 10 and 20 wt% concentrations. The mixture was stirred and incubated overnight in a water bath at 50 C to ensure complete solubility. A sterile dual-syringe system was used to mix the alginate solution with 20 wt% calcium chloride solution, forming the hydrogel upon extrusion. Then, constructed hydrogel specimens from all groups were characterized by FTIR, SEM, water uptake percentage (WA%), bioactivity and ion release, and cytotoxicity. Statistical analysis was done using One-Way ANOVA test for comparisons between groups, followed by multiple pairwise comparisons using Bonferroni adjusted significance level (p < 0.05).

Results: Alginate/BMBG loaded groups exhibited remarkable increase in porosity and pore size diameter [IIB1 (168), IIB2 (183) (µm)]. Similarly, WA% increased (~ 800%) which was statistically significant (p < 0.05). Alginate/BMBG loaded groups exhibited the strongest bioactive capability displaying prominent clusters of hydroxyapatite precipitates on hydrogel surfaces. Ca/P ratio of precipitates in IIA2 and IIB1 (1.6) were like Ca/P ratio for stoichiometric pure hydroxyapatite (1.67). MTT assay data revealed that the cell viability % of human gingival fibroblast cells have declined with increasing the concentration of both powders and hydrogel extracts in all groups after 24 and 48 h but still higher than the accepted cell viability % of (˃70%).

Conclusions: The outstanding laboratory performance of the injectable alginate/BMBGNPs (20 wt%) composite hydrogel suggested it as promising candidate for pulpotomy filling material potentially enhancing dentin regeneration in clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11401322PMC
http://dx.doi.org/10.1186/s12903-024-04808-3DOI Listing

Publication Analysis

Top Keywords

bioactive glass
12
novel injectable
8
pulpotomy filling
8
glass nanoparticles
8
mbg nps
8
injectable boron
4
boron doped-mesoporous
4
doped-mesoporous nano
4
nano bioactive
4
glass loaded-alginate
4

Similar Publications

This study aimed to determine the influence of air abrasion on the shear bond strength (SBS) of universal adhesives when using different abrasive powders. The AquaCare Twin served as the injection device. The prepared bovine dentin specimens were air- abraded with alumina particles or bioactive glass before applying the universal adhesive (All Bond Universal, Clearfil Universal Bond Quick ER, or Scotchbond Universal Plus Adhesive).

View Article and Find Full Text PDF

Multi-tissue regeneration remains a critical clinical challenge due to the lack of solutions that can replicate the hierarchical heterogeneity of such complex interfaces. While biofabrication approaches, such as extrusion-based, allow replicating robust, biomimetic, and layered designs, constructs are usually hindered by inadequate phase/layer integration, poor filler dispersion, and mismatched rheological and mechanical performances. This study introduces an ink engineering strategy as a solution for integrating natural-based nanocomposites in multi-tissue regenerative approaches.

View Article and Find Full Text PDF

Phosphate and phosphate invert glasses contain various elements, with a wide range of compositions. Recently, our group reported orthosilicophosphate glasses (SPGs) and the glass network structure composed of orthophosphates and orthosilicates crosslinked by cations. ZnO is an intermediate oxide that improves the chemical durability of glass.

View Article and Find Full Text PDF

Background: Reconstruction of head and neck mucosal defects presents unique challenges due to the anatomical complexity and functional demands of the region. Artificial biomaterials such as collagen and polyglycolic acid (PGA) sheets have gained clinical traction owing to their ease of use and reduced surgical burden. However, limitations such as local inflammation, degradation-related complications, and mechanical instability-particularly in highly mobile areas like the tongue-continue to hinder their broader application.

View Article and Find Full Text PDF

Background: Benign and benign-aggressive bone tumors, though non-metastatic, may require surgical intervention due to pain, fracture risk, or functional impairment. In many cases, bone grafting may be required in benign or benign-aggressive bone tumors. Although autografts remain the gold standard, they present disadvantages, especially in pediatric patients.

View Article and Find Full Text PDF