Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The therapy of intoxication with distinct organophosphorus (OP) compounds is still limited today. Especially chemical warfare agents like tabun and soman as well as novichok intoxications are difficult to address using established oxime therapeutics. These neurotoxins inhibit acetylcholinesterase (AChE), a pivotal enzyme in the synaptic cleft. The following accumulation of acetylcholine in the synaptic cleft leads to a dysfunctional, desensitized state of nicotinic acetylcholine receptors (nAChR). Without adequate treatment, the resulting cholinergic crisis leads to death by respiratory arrest. Consequently, the research approach for new therapeutic options needs to be expanded. A promising option would be substances interacting directly with nAChRs. Therefore, screening methods for new drug candidates are needed, with affinity assays playing an important role. In the present work, a saturation and competition scintillation proximity assay (SPA) for binding studies at [H]epibatidine binding sites, conventionally classified as orthosteric binding sites of the muscle type nAChR was developed. This method offers several advantages over other assay technologies because no separation as well as washing steps are required to remove unbound ligands. Assay precision and solvent tolerance were validated according to the guidelines for validation of bioanalytical methods of the Food and Drug Administration (FDA) and European Medicines Agency (EMA). The newly developed binding assay was successfully implemented on an automated pipetting platform and is suitable for high-throughput-screening of receptor-ligand interactions at the nAChR. Furthermore, it allows to investigate/quantify competition of highly toxic agents such as nerve agents or structurally similar pesticides at the orthosteric binding site. Related to further pharmacological results, the affinity to [H]epibatidine binding sites can provide additional information on whether potential drug candidates would be suitable for treatment of nerve agent poisoning.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2024.09.005DOI Listing

Publication Analysis

Top Keywords

binding sites
16
[h]epibatidine binding
12
scintillation proximity
8
proximity assay
8
nicotinic acetylcholine
8
synaptic cleft
8
drug candidates
8
orthosteric binding
8
binding
7
assay
5

Similar Publications

Construction of a bacterial surface display system using split green fluorescent protein (GFP) in Escherichia coli.

Biotechnol Lett

September 2025

Department of Chemical Engineering, Hongik University, Sangsu-dong, Mapo-gu, Seoul, 04066, Republic of Korea.

The cell surface display system employs carrier proteins to present target proteins on the outer membrane of cells. This system enables functional proteins to be exposed on the exterior of living cells without cell lysis, allowing direct interaction with the surrounding environment. A major limitation of conventional approaches is the difficulty in displaying large-sized enzymes or antibodies, despite their critical roles in applications requiring functional domains that must remain intact, such as catalytic or antigen-binding sites.

View Article and Find Full Text PDF

Durotaxis is a driver and potential therapeutic target in lung fibrosis and metastatic pancreatic cancer.

Nat Cell Biol

September 2025

Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Durotaxis, cell migration along stiffness gradients, is linked to embryonic development, tissue repair and disease. Despite solid in vitro evidence, its role in vivo remains largely speculative. Here we demonstrate that durotaxis actively drives disease progression in vivo in mouse models of lung fibrosis and metastatic pancreatic cancer.

View Article and Find Full Text PDF

A clinical and genotype-phenotype analysis of MACF1 variants.

Am J Hum Genet

September 2025

Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam 3000 CA, the Netherlands.

Microtubule-actin cross-linking factor 1 (MACF1) is a large protein of the spectraplakin family, which is essential for brain development. MACF1 interacts with microtubules through the growth arrest-specific 2 (Gas2)-related (GAR) domain. Heterozygous MACF1 missense variants affecting the zinc-binding residues in this domain result in a distinctive cortical and brain stem malformation.

View Article and Find Full Text PDF

High-throughput screening identifies a dual-activity inhibitor of OXCT1 for hepatocellular carcinoma therapy.

Bioorg Chem

September 2025

State Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China;

3-Oxoacid CoA-transferase 1 (OXCT1) plays a crucial role in hepatocellular carcinoma (HCC) progression through its ketolytic and succinyltransferase activities. Despite its potential as a therapeutic target, no small molecules have been developed to inhibit the dual enzymatic activities of OXCT1 specifically. In this study, our structural analysis revealed that the active sites for both enzymatic functions of OXCT1 are located in the same pocket.

View Article and Find Full Text PDF

The myristoylated preS1 domain (myr-preS1) of the hepatitis B virus (HBV) large surface protein is essential for binding to the receptor protein, Na/taurocholate co-transporting polypeptide (NTCP), and for the subsequent internalization of the virus-receptor complex. NTCP, which is expressed in hepatocytes, plays a physiological role in hepatic bile acid transport. Recent cryo-electron microscopy structures of the myr-preS1-NTCP complex were used to analyze virus-receptor interactions at the molecular level.

View Article and Find Full Text PDF