98%
921
2 minutes
20
This study presents a novel approach to address the autonomous stable tracking issue in electro-optical theodolite operating in closed-loop mode. The proposed methodology includes a multi-sensor adaptive weighted fusion algorithm and a fusion tracking algorithm based on a three-state transition model. A refined recursive formula for error covariance estimation is developed by integrating attenuation factors and least squares extrapolation. This formula is employed to formulate a multi-sensor weighted fusion algorithm that utilizes error covariance estimation. By assigning weighted coefficients to calculate the residual of the newly introduced error term and defining the sensor's unique states based on these coefficients, a fusion tracking algorithm grounded on the three-state transition model is introduced. In cases of interference or sensor failure, the algorithm either computes the weighted fusion value of the multi-sensor measurement or triggers autonomous sensor switching to ensure the autonomous and stable measurement of the theodolite. Experimental results indicate that when a specific sensor is affected by interference or the off-target amount cannot be extracted, the algorithm can swiftly switch to an alternative sensor. This capability facilitates the precise and consistent generation of data, thereby ensuring the stable operation of the tracking system. Furthermore, the algorithm demonstrates robustness across various measurement scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397839 | PMC |
http://dx.doi.org/10.3390/s24175847 | DOI Listing |
PLoS Genet
September 2025
Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India.
Tropomyosin is an actin-binding protein (ABP) which protects actin filaments from cofilin-mediated disassembly. Distinct tropomyosin isoforms have long been hypothesized to differentially sort to subcellular actin networks and impart distinct functionalities. Nevertheless, a mechanistic understanding of the interplay between Tpm isoforms and their functional contributions to actin dynamics has been lacking.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University;
Posterior lumbar screw fixation is the most common surgical method for lumbar disc herniation, but patients often face multiple complications postoperatively. The occurrence of screw track loosening can lead to fusion failure and even life-threatening screw track extrusion. However, there is currently a lack of animal models specifically targeting changes in the screw track following lumbar screw fixation.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
September 2025
Department of Rhythmology, University Heart Center Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, Lübeck, 23652, Germany.
Purpose: Ultrasound (US) is commonly used to assess left ventricular motion for examination of heart function. In stereotactic arrhythmia radioablation (STAR) therapy, managing cardiorespiratory motion during radiation delivery requires representation of motion information in computed tomography (CT) coordinates. Similar to conventional US-guided navigation during surgical procedures, 3D US can provide real-time motion data of the radiation target that could be transferred to CT coordinates and then be accounted for by the radiation system.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium. Electronic address:
Cellulose nanocrystals (CNCs) have emerged as promising candidates for chiroptical functional materials due to their ability to form cholesteric liquid crystals with tunable periodicity. The quality of the final cholesteric phase is influenced by the nucleation, growth and coalescence mechanism of the initial droplets, known as tactoids. Current research focuses on understanding the size and morphological transformations of these tactoids, to gain deeper insights into their dynamic behavior and, in turn, to better control the final properties of novel photonic materials.
View Article and Find Full Text PDFThe spatial organization and dynamics of a genome are central to gene regulation. While a comprehensive understanding of chromatin organization in the human nucleus has been achieved using fixed-cell methods, measuring the dynamics of specific genomic regions over extended periods in individual living cells remains challenging. Here, we present a robust and fully genetically encoded system for fluorescent labeling and long-term tracking of any accessible non-repetitive genomic locus in live human cells using fluorogenic and replenishable nanobody array fusions of the dCas9, and compact polycistronic single guide (sg)RNAs.
View Article and Find Full Text PDF