98%
921
2 minutes
20
Low-temperature (LT) is one of the major abiotic stresses that restrict the growth and development of maize seedlings. Brassinolides (BRs) have been shown to enhance LT tolerance in several plant species; the physiological and molecular mechanisms by which BRs enhance maize tolerance are still unclear. Here, we characterized changes in the physiology and transcriptome of N192 and Ji853 seedlings at the three-leaf stage with or without 2 μM 2,4-epibrassinolide (EBR) application at 25 and 15 °C environments via high-performance liquid chromatography and RNA-Sequencing. Physiological analyses revealed that EBR increased the antioxidant enzyme activities, enhanced the cell membrane stability, decreased the malondialdehyde formation, and inhibited the reactive oxygen species (ROS) accumulation in maize seedlings under 15 °C stress; meanwhile, EBR also maintained hormone balance by increasing indole-3-acetic acid and gibberellin 3 contents and decreasing the abscisic acid level under stress. Transcriptome analysis revealed 332 differentially expressed genes (DEGs) enriched in ROS homeostasis, plant hormone signal transduction, and the mitogen-activated protein kinase (MAPK) cascade. These DEGs exhibited synergistic and antagonistic interactions, forming a complex LT tolerance network in maize. Additionally, weighted gene co-expression network analysis (WGCNA) revealed that 109 hub genes involved in LT stress regulation pathways were discovered from the four modules with the highest correlation with target traits. In conclusion, our findings provide new insights into the molecular mechanisms of exogenous BRs in enhancing LT tolerance of maize at the seedling stage, thus opening up possibilities for a breeding program of maize tolerance to LT stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395154 | PMC |
http://dx.doi.org/10.3390/ijms25179396 | DOI Listing |
Plant Biotechnol J
September 2025
College of Agronomy, Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Henan Agricultural University, Zhengzhou, China.
The magnetic field is a continuously present environmental factor. It has been found that many species, including plants, can sense and utilise it. However, the effects of the magnetic field on plants and its potential utilisation, especially in crops, have been little explored.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Center for Ecological Public Health Security of Ye
Nanoplastics (NPs) have raised increasing attention due to their potential environmental risks to terrestrial vegetation and food security. However, for the plants with various photosynthetic pathways, the differences in their photosynthetic response and related mechanisms upon NPs exposure are still unclear. Here, the photosynthetic responses of typical soybean and corn plants under polystyrene NPs (PSNPs) exposure were systematically compared for the first time.
View Article and Find Full Text PDFPlant Cell Rep
September 2025
Key Laboratory of Germplasm Innovation for the Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, 400715, China.
The gene ZmDof08, which underlies the yellow-green leaf mutant phenotype in maize, enhances the activity of key enzymes involved in C photosynthesis, leading to a significant improvement in photosynthetic efficiency. Improving the photosynthetic efficiency of maize to increase its yield has long been a key focus in global agricultural research. Maize possesses a rich resource of leaf color mutants, which serve as valuable materials for studying leaf photosynthesis.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
July 2025
School of Life and Environmental Sciences, University of Sydney, 380 Werombi Road, Brownlow Hill, Camden, NSW 2570 Australia.
Unlabelled: Sugars are essential for plant development, with nitrogen (N) availability playing a critical role in their distribution across plant organs, ultimately shaping growth patterns. However, the regulatory mechanisms modulating carbon (C) assimilate allocation and utilization under different N forms are not well understood. This study examined C fixation, utilization, and spatial re-distribution in the roots of hydroponically grown maize seedlings subjected to four N treatments: 1 mM NO (low N; LN), 2 mM NO (medium N; MN), 10 mM NO (high N; HN), and 1 mM NH (low ammonium; LA).
View Article and Find Full Text PDFPlanta
September 2025
School of Life and Environmental Sciences, University of Sydney, 380 Werombi Road, Brownlow Hill, Camden, NSW, 2570, Australia.
Nitrogen (N) deficiency in maize regulates carbon (C) metabolism by enhancing sugar and starch metabolism and related gene expression in both shoots and roots, while increasing root competition for assimilates causing carbohydrate accumulation in leaves and sheaths due reduced translocation to sink tissues. Soluble sugars are vital for plant development, with nitrogen (N) availability playing a key role in their distribution across plant organs, ultimately shaping growth patterns. However, the regulatory mechanisms governing carbon (C) assimilate allocation and utilization under different N forms remain unclear.
View Article and Find Full Text PDF