Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The salinity and alkalinity of soils are two fundamental factors that limit plant growth and productivity. For that reason, a field study conducted at Sakha Agric. Res. Station in Egypt during the 2022-2023 winter season aimed to assess the impact of gypsum (G), compost (C), and zinc foliar application in two images, traditional (Z as ZnSO) and nanoform (Z as N-ZnO), on alleviating the saline-sodic conditions of the soil and its impact on wheat productivity. The results showed that the combination of gypsum, compost, and N-ZnO foliar spray (G + C + Z) decreased the soil electrical conductivity (EC), sodium adsorption ratio (SAR), and exchangeable sodium percentage (ESP) by 14.81%, 40.60%, and 35.10%, respectively. Additionally, compared to the control, the G + C + Z treatment showed improved nutrient content and uptake as well as superior wheat biomass parameters, such as the highest grain yield (7.07 Mg ha), plant height (98.0 cm), 1000-grain weight (57.03 g), and straw yield (9.93 Mg ha). Interestingly, foliar application of N-ZnO was more effective than ZnSO in promoting wheat productivity. Principal component analysis highlighted a negative correlation between increased grain yield and the soil EC and SAR, whereas the soil organic matter (OM), infiltration rate (IR), and plant nutrient content were found to be positively correlated. Furthermore, employing the k-nearest neighbors technique, it was predicted that the wheat grain yield would rise to 7.25 t ha under certain soil parameters, such as EC (5.54 dS m), ESP (10.02%), OM (1.41%), bulk density (1.30 g cm), infiltration rate (1.15 cm h), and SAR (7.80%). These results demonstrate how adding compost and gypsum to foliar N-ZnO can improve the soil quality, increase the wheat yield, and improve the nutrient uptake, all of which can support sustainable agriculture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11396932PMC
http://dx.doi.org/10.3390/nano14171450DOI Listing

Publication Analysis

Top Keywords

grain yield
12
compost gypsum
8
wheat yield
8
soil
8
yield soil
8
soil quality
8
gypsum compost
8
foliar application
8
wheat productivity
8
nutrient content
8

Similar Publications

This study evaluated the significance of ten different pollen types-maize, Spanish broom, cattail, marshmallow, malva, sunflower, khejri, pomegranate, ice flower, and bee pollen-in influencing the development, reproduction, and population growth of E. scutalis. The aim was to enhance our understanding of the pollen spectrum acceptable to this predatory mite.

View Article and Find Full Text PDF

The OsbZIP35-COR1-OsTCP19 module modulates cell proliferation to regulate grain length and weight in rice.

Sci Adv

September 2025

Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.

Grain size substantially influences rice quality and yield. In this study, we identified (), a quantitative trait locus encoding an F-box protein that enhances grain length by promoting cell proliferation. The transcription factor OsbZIP35 represses expression, while COR1 interacts with OsTCP19, leading to its degradation.

View Article and Find Full Text PDF

Plasma membrane maize Gγ protein MGG4 positively regulates seed size mainly through influencing kernel width.

Plant Cell Rep

September 2025

Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.

Plasma membrane Gγ protein MGG4, the candidate for maize yield QTL, positively regulates seed size mainly through affecting kernel width.

View Article and Find Full Text PDF

OsSTK-Mediated Sakuranetin Biosynthesis and Carbon Flux Orchestrate Growth and Defence in Rice.

Plant Biotechnol J

September 2025

State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Plants balance resource energy allocation between growth and immunity to ensure survival and reproduction under limited availability. This study reveals that rice cultivars with elevated sucrose levels boost resistance to the fungal pathogen Magnaporthe oryzae by accumulating the phytoalexin sakuranetin, regulated by the transcription factor STOREKEEPER (OsSTK). OsSTK binds to the promoter region of OsNOMT (Naringenin-7-O-Methyltransferase) to drive sakuranetin biosynthesis.

View Article and Find Full Text PDF

Background: Stored-product insects (Sitophilus spp., Plodia interpunctella, Sitotroga cerealella) drive substantial postharvest losses and increasingly resist synthetic fumigants. Valeriana wallichii roots yield volatile oils rich in short-chain acids and sesquiterpenes.

View Article and Find Full Text PDF