Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Colloidal metal nanoparticles exhibit interesting catalytic properties for the hydrogenation of (hetero)arenes. Catalysts based on precious metals, such as Ru and Rh, promote this reaction efficiently under mild reaction conditions. In contrast, heterogeneous catalysts based on earth-abundant metals can selectively hydrogenate (hetero)arenes but require harsher reaction conditions. Bimetallic catalysts that combine precious and earth-abundant metals are interesting materials to mitigate the drawbacks of each component. To this end, RuNi nanoparticles bearing a phosphine ligand were prepared through the decomposition of [Ru(η-CH)(η-CH)] and [Ni(η-CH)] by H at 85 °C. Wide angle X-ray scattering confirmed a bimetallic segregated structure, with Ni predominantly on the surface. Spectroscopic analyses revealed that the phosphine ligand coordinated to the surface of both metals, suggesting, as well, a partial Ni shell covering the Ru core. The RuNi-based nanomaterials were used as catalysts in the hydrogenation of quinoline to assess the impact of the metallic composition and of the stabilizing agent on their catalytic performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639643PMC
http://dx.doi.org/10.1002/cplu.202400516DOI Listing

Publication Analysis

Top Keywords

catalysts based
8
reaction conditions
8
earth-abundant metals
8
phosphine ligand
8
colloidal bimetallic
4
bimetallic runi
4
runi particles
4
particles behaviour
4
behaviour catalytic
4
catalytic quinoline
4

Similar Publications

NU-1000/Cu Nanocomposite-Immobilized Organophosphate Hydrolase for the Cascade Conversion of Methyl Parathion to 4-Aminophenol.

Langmuir

September 2025

State Key Laboratory of Synthetic Biology, School of Synthetic Biology and Biomanufacturing, Frontiers Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.

Effective degradation and detoxification of the highly toxic organophosphate pesticide methyl parathion (MP) are important for pollution treatment and sustainable development. Enzymatic hydrolysis of MP by organophosphate hydrolase (OPH) is an effective way. However, hydrolytic product 4-nitrophenol (4-NP) remains environmentally hazardous.

View Article and Find Full Text PDF

Quinoline as a Photochemical Toolbox: From Substrate to Catalyst and Beyond.

Acc Chem Res

September 2025

Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.

ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.

View Article and Find Full Text PDF

Constructing Ni(OH) nanosheets on a nickel foam electrode for efficient electrocatalytic ethanol oxidation.

Dalton Trans

September 2025

Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China.

The main bottleneck faced by traditional hydrogen production technology through water electrolysis lies in the high energy consumption of the anodic oxygen evolution reaction (OER). Combining the thermodynamically favorable ethanol oxidation reaction (EOR) with the hydrogen evolution reaction provides a promising route to reduce the energy consumption of hydrogen production and generate high value-added products. In this study, a facile method was developed for nickel oxyhydroxide (NiOOH) fabrication.

View Article and Find Full Text PDF

The oxygen reduction reaction (ORR) is critical to energy conversion technologies and requires efficient catalysts for superior performance. Herein, nitrogen-doped carbide-derived carbon (N-CDC) catalysts are prepared using novel engineered molecular architectures based on polymer-derived ceramic technology. The obtained catalyst materials show a surface N concentration of >5 wt % and a hierarchically porous structure, resulting in a specific surface area of over 2000 m g.

View Article and Find Full Text PDF

Transformation of Co(OH) to CoOOH for Photocatalytic Oxygen Evolution Reaction.

J Phys Chem Lett

September 2025

Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States.

The development of efficient and economical oxygen evolution reaction (OER) catalysts is highly desired, and cobalt-based nanomaterials are promising candidates. In this work, we tackle one key question for cobalt-assisted photocatalytic OER: What is the true active species of Co(OH) for the photocatalytic OER? Hence, we investigated photocatalytic OER on nanostructured Co(OH) and CoO for comparison. We found that there was a significant transformation of Co(OH) during the photocatalytic process with a [Ru(bpy)]/SO buffer.

View Article and Find Full Text PDF