Development and characterization of polysiloxane-based gel loaded with phytoingredients encapsulated in phytosomes for scar management.

Cell Mol Biol (Noisy-le-grand)

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent research has emphasized the development of efficient drug delivery systems to facilitate the delivery of biological compounds such as polyphenols via skin absorption. Phytozomes have been employed as carriers of plant compounds in this context Hydrogen bonding between plant polyphenols and the phospholipid phosphate group enables efficient encapsulation of potent compounds for enhanced drug delivery systems. Additionally, the strong affinity of phytosomes for the skin's phospholipids enhances skin absorption. In this study, phytosomes were initially formulated using the thin-layer hydration method After optimizing the synthetic parameters, phytosomes were loaded with Resveratrol and Quercetin for enhanced delivery and skin absorption potential to assess the characteristics of the synthesized phytosomes, tests were conducted to determine particle distribution and size, zeta potential, and examine the microstructure morphology using a scanning electron microscope (SEM). Furthermore, a siloxane gel base was formulated in this study, and the stability of the physicochemical and biological properties of the final prepared nanoformulation was investigated. The results of this study indicated that the formulated phytosomes exhibit optimal characteristics for facilitating high skin penetration of resveratrol and quercetin. A high skin absorption was observed after 60 days of synthesis. Additionally, the base of the siloxane gel can play a significant role in preventing the formation of scars by reducing the passage of water vapor.

Download full-text PDF

Source
http://dx.doi.org/10.14715/cmb/2024.70.8.32DOI Listing

Publication Analysis

Top Keywords

skin absorption
16
drug delivery
8
delivery systems
8
resveratrol quercetin
8
siloxane gel
8
high skin
8
phytosomes
6
skin
5
development characterization
4
characterization polysiloxane-based
4

Similar Publications

Ilunocitinib, a novel Janus kinase inhibitor, is indicated for managing pruritus and skin lesions associated with canine allergic and atopic dermatitis. Pharmacokinetics of ilunocitinib were investigated following single intravenous and oral administrations, both in fed and fasted states. Dose proportionality was assessed using oral doses ranging from 0.

View Article and Find Full Text PDF

Novel therapeutic approaches on molecular pathways are being developed to treat inflammatory and autoimmune cutaneous dermatoses. Apremilast is an orally administered small-molecule phosphodiesterase 4 (PDE4) inhibitor that upregulates intracellular cyclic 3',5'-adenosine monophosphate (cAMP) levels to mediate a large array of proinflammatory cytokines as well as exerts its anti-inflammatory functions and therapeutic efficacy in skin diseases rather than an immunosuppressive mode of action. Early-phase clinical trials have demonstrated its favorable efficacy such that the United States Food and Drug Administration (USFDA) has approved its use for the treatment of psoriasis, psoriatic arthritis, and Behçet's syndrome.

View Article and Find Full Text PDF

Reversible increased basement membrane permeability and calcium ion redistribution facilitate ultrasound-enhanced transdermal drug delivery efficiency.

Int J Pharm

September 2025

Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, People's Republic of China; Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, People's Republic of China. Electronic address:

Background: Ultrasound-assisted transdermal drug delivery, or sonophoresis, enhances skin permeability, offering a non-invasive alternative for drug administration. However, its clinical application remains limited because of an insufficient understanding of its underlying mechanisms and optimal parameters. This study investigates the factors influencing ultrasound-enhanced drug absorption and examines its biological effects on skin structures and HaCaT cells, providing a comprehensive analysis of its mechanisms.

View Article and Find Full Text PDF

Ultraviolet (UV) radiation-induced photodamage remains a critical dermatological challenge, necessitating natural alternatives to synthetic photo-protectants. This study aimed to evaluate the anti-photodamage potential of fermented Sphagnum moss filtrate (SMFF) through integrated metabolomic, cellular and in vivo analyses. Untargeted metabolomics identified 933 metabolites, with fermentation significantly enriching taurine, glycine derivatives and phenolic acids while activating glycine/serine and taurine/hypotaurine metabolic pathways critical for redox homeostasis.

View Article and Find Full Text PDF

Impact of degradation in subcutaneous tissue and lymphatic fluid on absorption of Fc-fusion proteins following subcutaneous administration.

Drug Metab Pharmacokinet

July 2025

Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan.

Subcutaneous administration is widely used as a clinical administration route for Fc-fusion proteins. However, predicting bioavailability (BA) in humans after subcutaneous administration is challenging due to multiple factors involved in the absorption process. This study aimed to elucidate the impact of degradation on the BA of Fc-fusion proteins.

View Article and Find Full Text PDF