Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding how per- and polyfluoroalkyl substances (PFASs) enter aquatic ecosystems is challenging due to the complex interplay of physical, chemical, and biological processes, as well as the influence of hydraulic and hydrological factors and pollution sources at the catchment scale. The spatiotemporal dynamics of PFASs across various media remain largely unknown. Here we show the fate and transport mechanisms of PFASs by integrating monitoring data from an estuarine reservoir in Singapore into a detailed 3D model. This model incorporates hydrological, hydrodynamic, and water quality processes to quantify the distributions of total PFASs, including the major components perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS), across water, particulate matter, and sediments within the reservoir. Our results, validated against four years of field measurements with most relative average deviations below 40%, demonstrate that this integrated approach effectively characterizes the occurrence, sources, sinks, and trends of PFASs. The majority of PFASs are found in the dissolved phase (>95%), followed by fractions sorbed to organic particles like detritus (1.0-3.5%) and phytoplankton (1-2%). We also assess the potential risks in both the water column and sediments of the reservoir. The risk quotients for PFOS and PFOA are <0.32 and < 0.00016, respectively, indicating an acceptable risk level for PFASs in this water body. The reservoir also exhibits substantial buffering capacity, even with a tenfold increase in external loading, particularly in managing the risks associated with PFOA compared to PFOS. This study not only enhances our understanding of the mechanisms influencing the fate and transport of surfactant contaminants but also establishes a framework for future research to explore how dominant environmental factors and processes can mitigate emerging contaminants in aquatic ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381888PMC
http://dx.doi.org/10.1016/j.ese.2024.100473DOI Listing

Publication Analysis

Top Keywords

aquatic ecosystems
8
hydrodynamic water
8
water quality
8
sediments reservoir
8
pfass
6
characterizing pfass
4
pfass aquatic
4
ecosystems hydrodynamic
4
water
4
quality models
4

Similar Publications

Background: The river ecosystems provide habitats and source of water for a number of species including humans. The uncontrolled accumulation of pollutants in the aquatic environment enhances the development of antibiotic-resistant bacteria and genes.

Methods: Water samples were collected seasonally from different sites of Gomti and Ganga River.

View Article and Find Full Text PDF

Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, has become a significant contaminant in aquatic environments due to its extensive use and incomplete metabolism. This review comprehensively analyses CIP pollution, including its sources, environmental and health impacts, and removal strategies. Chemical methods such as advanced oxidation processes and physical techniques like adsorption are evaluated for their efficiency in CIP removal.

View Article and Find Full Text PDF

Trophic guilds of cichlid species in a floodplain river.

J Fish Biol

September 2025

Department of Fisheries and Aquatic Sciences, Cross River University of Technology, PMB 102 Obubra Campus, Calabar, Nigeria.

Floodplains support a diverse cichlid community, yet the trophic ecology of these species is not well understood. This study investigated the dietary niches and trophic guilds of cichlid species in the Cross River floodplain. A total of 480 fish samples from eight cichlid species were collected from three locations (Itu, Obubra, Ikom) over 6 months (October 2019-March 2020).

View Article and Find Full Text PDF

Pharmaceutical contaminants reaching natural aquatic ecosystems can affect fish behaviour, modifying activity patterns, foraging behaviour and antipredator responses. While laboratory-based studies can offer key insights, assessing the ecological relevance of these findings requires field-based approaches. Therefore, we examined the effects of oxazepam, a widely prescribed anxiolytic drug, on the behaviour of a cyprinid fish (the common roach, ) in the wild, combining slow-release exposure implants with continuous tracking via acoustic telemetry.

View Article and Find Full Text PDF

Parasites can induce gene expression changes in their hosts, either benefiting the parasite or the host. In particular, trematodes are not only one of the most ubiquitous groups of aquatic parasites, they also have huge impacts on individual hosts with significant ecological and economic repercussions. The trematode Bucephalus minimus infects Cerastoderma edule (the edible cockle), a socioeconomically and ecologically important bivalve, as its first intermediate host.

View Article and Find Full Text PDF