Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH) are prevalent conditions linked to obesity and metabolic disturbances, with potential complications such as cirrhosis and cardiovascular risks. This systematic review and meta-analysis aimed to evaluate the efficacy of pemafibrate, a drug targeting fat and sugar metabolism genes, in treating patients with MASLD/MASH.

Methods: Databases such as MEDLINE, Web of Science, Cochrane Library, and Scopus were searched until September 2023 to identify relevant studies. Selected studies underwent a thorough quality assessment using tools like Risk of Bias 2 tool (ROB-2) and the National Institutes of Health (NIH) Quality Assessment Tools. Comprehensive meta-analysis software was used for statistical evaluations, with a focus on lipid profiles, liver function tests, and fibrosis measurements.

Results: A total of 13 studies were included; 10 of them were included in the quantitative analysis. Our findings showed that pemafibrate significantly decreased low-density lipoprotein cholesterol (LDL-C) (effect size (ES) = -9.61 mg/dL, 95% confidence interval (CI): -14.15 to -5.08), increased high-density lipoprotein cholesterol (HDL-C) (ES = 3.15 mg/dL, 95% CI: 1.53 to 4.78), and reduced triglycerides (TG) (ES = -85.98 mg/dL, 95% CI: -96.61 to -75.36). Additionally, pemafibrate showed a marked reduction in liver enzyme levels, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), γ-glutamyl transpeptidase (GGT), and alkaline phosphatase (ALP), with significant effect sizes and P values. For liver stiffness outcomes, pemafibrate decreased AST to platelet ratio index (APRI) (ES = -0.180, 95% CI: -0.221 to -0.138).

Conclusions: Pemafibrate, with its enhanced efficacy and safety profile, presents as a pivotal agent in MASLD/MASH treatment. Its lipid-regulating properties, coupled with its beneficial effects on liver inflammation markers, position it as a potentially invaluable therapeutic option.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379042PMC
http://dx.doi.org/10.14740/gr1750DOI Listing

Publication Analysis

Top Keywords

metabolic dysfunction-associated
12
mg/dl 95%
12
liver
8
liver function
8
dysfunction-associated steatotic
8
steatotic liver
8
liver disease
8
quality assessment
8
assessment tools
8
pemafibrate decreased
8

Similar Publications

Importance: As obesity rates rise in the US, managing associated metabolic comorbidities presents a growing burden to the health care system. While bariatric surgery has shown promise in mitigating established metabolic conditions, no large studies have quantified the risk of developing major obesity-related comorbidities after bariatric surgery.

Objective: To identify common metabolic phenotypes for patients eligible for bariatric surgery and to estimate crude and adjusted incidence rates of additional metabolic comorbidities associated with bariatric surgery compared with weight management program (WMP) alone.

View Article and Find Full Text PDF

Hic-5 deficiency attenuates MAFLD by inhibiting neutrophils migration via the CXCL1-CXCR2 axis.

J Gastroenterol

September 2025

Department of General Surgery (Hepatopancreatobiliary Surgery), Department of Biliary-Pancreatic Center, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou City, 646000, Sichuan Province, China.

Background And Aims: Inflammatory cell infiltration in the liver is a hallmark of metabolic dysfunction-associated fatty liver disease (MAFLD). However, the pathological events that trigger the infiltration of inflammatory cells to mediate MAFLD pathogenesis remains poorly understood. This study aims to investigate the function and mechanism of Hic-5 on hepatic inflammation of MAFLD.

View Article and Find Full Text PDF

The Proteomic Profiling of Circulating Extracellular Vesicles of Western Diet and Chemical-Induced Murine MASH Model.

Kaohsiung J Med Sci

September 2025

Hepatitis Research Center, College of Medicine; Center for Metabolic Disorders and Obesity; Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly prevalent chronic liver condition that can progress to severe complications such as metabolic dysfunction-associated steatohepatitis (MASH). Despite its growing burden, there are no reliable non-invasive biomarkers for tracking disease progression. In this study, we established a murine MASLD/MASH model using a high-fat diet and chemical (CCl) induction.

View Article and Find Full Text PDF

Background: Liver fibrosis is a key factor in the progression of chronic liver diseases, including viral hepatitis and metabolic dysfunction-associated steatotic liver disease. If untreated, fibrosis can progress to cirrhosis, increasing the risk of liver cancer or failure. This study evaluates the Fibrosis (FIB)-3 index, a novel marker free from age-related biases, for predicting liver fibrosis and 5-year outcomes in hepatocellular carcinoma (HCC) patients undergoing hepatectomy.

View Article and Find Full Text PDF

Introduction: Metabolic dysfunction and metabolic dysfunction-associated steatotic liver disease (MASLD) are associated with an increased risk of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB). We aimed to study risk factors for HCC and to assess the performance of the PAGE-B score in this population.

Methods: We included CHB patients with ≥ 1 metabolic comorbidity from nine centres.

View Article and Find Full Text PDF