Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A novel Fe-g-CN/BiMoO (FCNB) Z-scheme heterojunction enriched with oxygen vacancy is constructed and employed for the photo-Fenton degradation of tetracycline (TC). The 2% FCNB demonstrates prominent catalytic performance and mineralization efficiency for TC wastewater, showing activity of 8.20 times greater than that of pure photocatalytic technology. Density-functional theory (DFT) calculations and degradation experiments confirm that the formation of Fe-N sites induces spin-polarization in the material, and the difference in Fermi energy levels results in the formation of built-in electric field at the contact interface, which facilitates the continuous generation and migration of photogenerated carriers to address the issue of insufficient cycling power of Fe (III)/Fe (II).The reactive radicals persistently target the extremely reactive sites anticipated by the Fukui function, causing the mineralization of TC molecules into "non-toxic" compounds through processes of hydroxylation, demethylation, and deamidation. This work holds significant importance in the domain of eliminating organic pollutants from water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202406125 | DOI Listing |