Biotechnological potentials of surfactants in coal utilization: a review.

Environ Sci Pollut Res Int

Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Al-Farabi ave. 71, Almaty, 050040, Kazakhstan.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The quest for scientifically advanced and sustainable solutions is driven by growing environmental and economic issues associated with coal mining, processing, and utilization. Consequently, within the coal industry, there is a growing recognition of the potential of microbial applications in fostering innovative technologies. Microbial-based coal solubilization, coal beneficiation, and coal dust suppression are green alternatives to traditional thermochemical and leaching technologies and better meet the need for ecologically sound and economically viable choices. Surfactant-mediated approaches have emerged as powerful tools for modeling, simulation, and optimization of coal-microbial systems and continue to gain prominence in clean coal fuel production, particularly in microbiological co-processing, conversion, and beneficiation. Surfactants (surface-active agents) are amphiphilic compounds that can reduce surface tension and enhance the solubility of hydrophobic molecules. A wide range of surfactant properties can be achieved by either directly influencing microbial growth factors, stimulants, and substrates or indirectly serving as frothers, collectors, and modifiers in the processing and utilization of coal. This review highlights the significant biotechnological potential of surfactants by providing a thorough overview of their involvement in coal biodegradation, bioprocessing, and biobeneficiation, acknowledging their importance as crucial steps in coal consumption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415520PMC
http://dx.doi.org/10.1007/s11356-024-34892-5DOI Listing

Publication Analysis

Top Keywords

coal
10
processing utilization
8
biotechnological potentials
4
potentials surfactants
4
surfactants coal
4
coal utilization
4
utilization review
4
review quest
4
quest scientifically
4
scientifically advanced
4

Similar Publications

Naomaohu lignite (NL) from Hami, Xinjiang, was ultrasonically extracted with a mixed solvent of CS and acetone (in equal volumes) to obtain the extract residue (ER). The ER was then separated based on density differences with CCl to yield the corresponding light residue (NL-L). The composition and structural characteristics of the light residue were characterized by proximate, ultimate, infrared, and thermogravimetric analyses (TG-DTG).

View Article and Find Full Text PDF

India's energy demand increased by 7.3% in 2023 compared to 2022 (5.6%), primarily met by coal-based thermal power plants (TPPs) that contribute significantly to greenhouse gas emissions.

View Article and Find Full Text PDF

The pyrolysis of flue-cured tobacco stalks (TS) faces challenges such as low bio-oil value and utilization efficiency. Existing studies have overlooked the anatomical heterogeneity of tobacco stalks, thereby limiting the directional regulation of high-value components, such as nicotine and phenolic compounds. This study divides TS into the husk (TSH), xylem (TSX), and pith (TSP), and investigates their physicochemical properties, pyrolysis behavior (through TGA and fixed-bed pyrolysis experiments), and interactions.

View Article and Find Full Text PDF

Zeolite synthesis from fly ash offers recycling and environmental benefits for carbon dioxide capture, but varying fly ash composition from different sources has different compositions, leading to inconsistent adsorption results. To achieve high CO adsorption performance and stability in zeolite synthesis from fly ash systems, this study established an element-controlled simulated fly ash system with Ca/Fe gradient differences. Hydrothermal synthesis yielded zeolites with optimized oxide ratios for CO adsorption.

View Article and Find Full Text PDF

Analysis of the toxicity and mechanisms of osteoporosis caused by cigarette toxicants using network toxicology and molecular docking techniques.

Sci Total Environ

September 2025

Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China. Electronic address:

The objective of this research was to use a network toxicology approach to examine the possible toxicity of the cigarette toxicants nicotine and coal tar that cause osteoporosis (OP) as well as its molecular processes. We determined the primary chemical structures and 128 targets of action of tar and nicotine using the Swiss Target Prediction, NP-MRD, and PubChem databases. We discovered that genes including DNAJB1, CCDC8, LINC00888, ATP6V1G1, MPV17L2, PPCS, and TACC1 had a disease prognostic guiding value by LASSO analysis and differential analysis of GEO microarray data.

View Article and Find Full Text PDF