Soft Bioelectronics for Heart Monitoring.

ACS Sens

Department of Electrical Engineering (ESAT-MNS), KU Leuven, 3000 Leuven, Belgium.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cardiovascular diseases (CVDs) are a predominant global health concern, accounting for over 17.9 million deaths in 2019, representing approximately 32% of all global fatalities. In North America and Europe, over a million adults undergo cardiac surgeries annually. Despite the benefits, such surgeries pose risks and require precise postsurgery monitoring. However, during the postdischarge period, where monitoring infrastructures are limited, continuous monitoring of vital signals is hindered. In this area, the introduction of implantable electronics is altering medical practices by enabling real-time and out-of-hospital monitoring of physiological signals and biological information postsurgery. The multimodal implantable bioelectronic platforms have the capability of continuous heart sensing and stimulation, in both postsurgery and out-of-hospital settings. Furthermore, with the emergence of machine learning algorithms into healthcare devices, next-generation implantables will benefit artificial intelligence (AI) and connectivity with skin-interfaced electronics to provide more precise and user-specific results. This Review outlines recent advancements in implantable bioelectronics and their utilization in cardiovascular health monitoring, highlighting their transformative deployment in sensing and stimulation to the heart toward reaching truly personalized healthcare platforms compatible with the Sustainable Development Goal 3.4 of the WHO 2030 observatory roadmap. This Review also discusses the challenges and future prospects of these devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.4c00442DOI Listing

Publication Analysis

Top Keywords

sensing stimulation
8
monitoring
6
soft bioelectronics
4
bioelectronics heart
4
heart monitoring
4
monitoring cardiovascular
4
cardiovascular diseases
4
diseases cvds
4
cvds predominant
4
predominant global
4

Similar Publications

Introduction: Although emerging evidence supports the short-term efficacy of transcranial magnetic stimulation (TMS), including repetitive TMS (rTMS) and theta-burst transcranial magnetic stimulation (TBS-TMS), and transcranial direct current stimulation (tDCS) for managing patients with chronic musculoskeletal pain (CMP), their clinical utility in managing CMP remains inconclusive. This uncertainty may arise from methodological limitations, including heterogeneity in treatment parameters such as stimulation targets and dosages. Additionally, safety profiles for these non-invasive brain stimulation interventions in patients with CMP remain insufficiently reported, with limited data on adverse events, cumulative risks and long-term safety outcomes.

View Article and Find Full Text PDF

Introduction: Traditional hydrogels with poor mechanical properties and lack of biological activities severely limit their application in wound therapy. Designing multifunctional hydrogels for monitoring and accelerating wound healing remains imperative.

Objectives: The aim of this study is to develop a multifunctional antifreeze ionic conductive Gel-TBA@organohydrogel with antibacterial, anti-inflammatory and antioxidant properties for monitoring and wound treatment.

View Article and Find Full Text PDF

Science of music-based citizen science: How seeing influences hearing.

PLoS One

September 2025

Department of Engineering and School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.

Citizen science engages volunteers to contribute data to scientific projects, often through visual annotation tasks. Hearing based activities are rare and less well understood. Having high quality annotations of performed music structures is essential for reliable algorithmic analysis of recorded music with applications ranging from music information retrieval to music therapy.

View Article and Find Full Text PDF

Upon DNA virus infection, cGAS senses viral DNA and triggers MITA (also called STING)-dependent induction of type I interferons (IFN-Is) and other cytokines/chemokines. IFN-Is further activate STAT1/2 to induce interferon-stimulated genes (ISGs) and the innate antiviral response. How the innate antiviral response is silenced in uninfected cells and efficiently mounts upon viral infection is not fully understood.

View Article and Find Full Text PDF

The immune system uses a variety of DNA sensors, including endo-lysosomal Toll-like receptors 9 (TLR9) and cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These sensors activate immune responses by inducing the production of a variety of cytokines, including type I interferons (IFN). Activation of cGAS requires DNA-cGAS interaction.

View Article and Find Full Text PDF