Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To investigate the molecular characteristics of obacunone, and to screen and identify potential targets of obacunone against sepsis.

Methods: The pharmacological parameters and molecular characteristics of obacunone were analyzed with the aid of the Traditional Chinese Medicine Systems Pharmacology Database Analysis Platform (TCMSP). The potential targets of obacunone against sepsis were screened using SwissTargetPrediction and Drug Repositioning and Adverse Drug Reaction Chemical-Protein Interactome (DRAR-CPI) software, with a Z'-score < -0.5. The anti-sepsis targets of obacunone were selected by Online Mendelian Inheritance in Man (OMIM), Comparative Toxicogenomics Database (CTD) and Therapeutic Target Database (TTD). The anti-sepsis potential target was identified by molecular docking software.

Results: The oral bioavailability of obacunone was 81.58% and the drug-likeness was 0.57 indicating that obacunone showed good drug formation. A total of 242 potential targets were screened through SwissTargetPrediction and DRAR-CPI software, 13 targets were directly related to sepsis. Cathepsin G (CTSG), caspase-1 (CASP1), S100 calcium binding protein A9 (S100A9), protein C (inactivator of coagulation factors V a and VIII a, PROC), mitogen-activated protein kinase 1 (MAPK1), glucose-6-phosphate dehydrogenase (G6PD), interleukin-10 (IL-10), migration inhibitory factor (MIF), complement C5a receptor 1 (C5AR1), caspase-3 (CASP3), CXC chemokine receptor 2 (CXCR2), thrombin receptor (F2R), nicotinamide phosphoribosyltransferase (NAMPT) were identified as the potential targets for anti-sepsis of obacunone by molecular docking software, the free binding energies were -32.55, 1.26, -30.00, 300.08, -31.88, -30.29, -21.38, -30.79, 16 777.84, -21.80, 6 443.36, -20.38, -23.47 kJ/mol, respectively.

Conclusions: Obacunone can inhibit blood coagulation and improve inflammatory response by regulating PROC and F2R. It regulates MIF, S100A9, G6PD and IL-10 to play a role in immune response. It regulates CTSG, CASP1, MAPK1, C5AR1 and CASP3 to protect sepsis-damaged organs. By regulating CXCR2, it can reduce the excessive migration of neutrophils to the site of inflammation, alleviate tissue damage. By regulating NAMPT, it improves cellular energy status, reduces oxidative stress, and protects cells from damage.

Download full-text PDF

Source
http://dx.doi.org/10.3760/cma.j.cn121430-20231129-01019DOI Listing

Publication Analysis

Top Keywords

potential targets
20
targets obacunone
16
obacunone
10
molecular characteristics
8
characteristics obacunone
8
screened swisstargetprediction
8
drar-cpi software
8
molecular docking
8
targets
7
potential
6

Similar Publications

Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.

Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.

View Article and Find Full Text PDF

Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.

View Article and Find Full Text PDF

Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.

View Article and Find Full Text PDF

Major depressive disorder affects millions worldwide, yet current treatments require prolonged administration. In contrast, ketamine produces rapid antidepressant effects by blocking spontaneous N-Methyl-D-Aspartate (NMDA) receptor signaling, which lifts the suppression of protein synthesis and triggers homeostatic synaptic plasticity. Here, we identify a parallel signaling pathway involving metabotropic glutamate receptor 5 (mGluR5) that promotes rapid antidepressant-like effects.

View Article and Find Full Text PDF

The challenge of photocatalytic hydrogen production has motivated a targeted search for MXenes as a promising class of materials for this transformation because of their high mobility and high light absorption. High-throughput screening has been widely used to discover new materials, but the relatively high cost limits the chemical space for searching MXenes. We developed a deep-learning-enabled high-throughput screening approach that identified 14 stable candidates with suitable band alignment for water splitting from 23 857 MXenes.

View Article and Find Full Text PDF