98%
921
2 minutes
20
In most charge density wave (CDW) systems of different material classes, ranging from traditional correlated systems in low-dimension to recent topological systems with Kagome lattice, superconductivity emerges when the system is driven toward the quantum critical point (QCP) of CDW via external parameters of doping and pressure. Despite this rather universal trend, the essential hinge between CDW and superconductivity has not been established yet. Here, the evidence of coupling between electron and CDW fluctuation is reported, based on a temperature- and intercalation-dependent kink in the angle-resolved photoemission spectra of 2H-PdTaSe. Kinks are observed only when the system is in the CDW phase, regardless of whether a long- or short-range order is established. Notably, the coupling strength is enhanced upon long-range CDW suppression, albeit the coupling energy scale is reduced. Interestingly, the estimation of the superconducting critical temperature by incorporating the observed coupling characteristics into McMillan's equation yields results closely resembling the known values of the superconducting dome. The results thus highlight a compelling possibility that this new coupling mediates Cooper pairs, which provides new insights into the competing relationship not only for CDW but also for other competing orders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538642 | PMC |
http://dx.doi.org/10.1002/advs.202406043 | DOI Listing |
Adv Sci (Weinh)
September 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, State Key Laboratory of Advanced Materials for Intelligent Sensing, Tianjin University, Tianjin, 300072, China.
Organic electrode materials have garnered great attention in recent years, owing to their resource sustainability, structural diversity, and superior compatibility with various ionic species. Among them, quinone-based compounds have attracted particular interest. Notably, compared with para-quinone analogs (e.
View Article and Find Full Text PDFOrg Lett
September 2025
Department of Chemistry, Indian Institute of Techology Bombay, Powai, Mumbai 400076, India.
The direct α-α coupling of 3-pyrrolyl boron dipyrromethenes (BODIPYs) affords helical near-infrared (NIR)-active dimers in one step via a radical Pd-catalyzed process. X-ray analysis reveals Z-type helical packing stabilized by π-π stacking and hydrogen-bonding interactions. These dimers showed pronounced bathochromic absorption shifts compared to monomers and solvent-dependent charge-transfer bands up to 905 nm with fluorescence quenching.
View Article and Find Full Text PDFNano Lett
September 2025
Department of Physics, Columbia University, New York, New York 10027, United States.
Graphene-based photonic structures have emerged as fertile ground for the controlled manipulation of surface plasmon polaritons (SPPs), providing a two-dimensional platform with low optoelectronic losses. In principle, nanostructuring graphene can enable further confinement of nanolight─enhancing light-matter interactions in the form of SPP cavity modes. In this study, we engineer nanoscale plasmonic cavities composed of self-assembled C arrays on graphene.
View Article and Find Full Text PDFJ Comput Chem
September 2025
Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Leipzig University, Leipzig, Germany.
We investigated primary and secondary geometric isotope effects (H, D, T) on charge-inverted hydrogen bonds (CIHB) and dihydrogen bonds (DHB) using nuclear-electronic orbital density functional theory (NEO-DFT). The dianionic but electrophilic boron cluster [BH] served as a bonding partner, exhibiting a negatively polarized hydrogen atom in the BH bond. CIHB systems included interactions with Lewis acids (AlH, BH, GaH) and carbenes (CF, CCl, CBr), while DHBs were analyzed with NH, HF, HCl, and HBr.
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
Universidad de Córdoba, Grupo de Química Computacional, Facultad de Ciencias Básicas, Carrera 6, No. 77-305, Montería-Córdoba, Colombia.
This study explores the photochemical conversion of BN-Dewar benzene into BN-benzvalene derivatives, offering a strategic route to heteroatom-containing valence isomers with distinctive electronic properties. Using time-dependent density functional theory (TD-DFT) and electron localization function (ELF) analyses, the excited-state mechanism and associated structural rearrangements were elucidated. Vertical excitation to the S state was found to weaken the CC and B-N bonds while strengthening the N-Si bond in silyl-substituted derivatives, a key factor enabling efficient BN-benzvalene formation.
View Article and Find Full Text PDF