Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Airborne pathogens represent a topic of scientific relevance, especially considering the recent COVID-19 pandemic. Air pollution, and particulate matter (PM) in particular, has been proposed as a possible risk factor for the onset and spread of pathogen-driven respiratory diseases. Regarding SARS-CoV-2 infection, exposure to fine PM (PM, particles with an aerodynamic diameter < 2.5 μm) has been associated with increased incidence of the COVID-19 disease. To provide useful insights into the mechanisms through which PM might be involved in infection, we exposed human lung cells (A549) to PM and SARS-CoV-2, to evaluate the toxicological properties and the molecular pathways activated when airborne particles are combined with viral particles. Winter PM was collected in a metropolitan urban area and its physico-chemical composition was analyzed. A549 cells were exposed to SARS-CoV-2 concomitantly or after pre-treatment with PM. Inflammation, oxidative stress and xenobiotic metabolism were the main pathways investigated. Results showed that after 72 h of exposure PM significantly increased the expression of the angiotensin-converting enzyme 2 (ACE2) receptor, which is one of the keys used by the virus to infect host cells. We also analyzed the endosomal route in the process of internalization, by studying the expression of RAB5 and RAB7. The results show that in cells pre-activated with PM and then exposed to SARS-CoV-2, RAB5 expression is significantly increased. The activation of the inflammatory process was then studied. Our findings show an increase of pro-inflammatory markers (NF-kB and IL-8) in cells pre-activated with PM for 72 h and subsequently exposed to the virus for a further 24 h, further demonstrating that the interaction between PM and SARS-CoV-2 determines the severity of the inflammatory responses in lung epithelial cells. In conclusion, the study provides mechanistic biological evidence of PM contribution to the onset and progression of viral respiratory diseases in exposed populations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.175979DOI Listing

Publication Analysis

Top Keywords

particulate matter
8
shedding light
4
light cellular
4
cellular mechanisms
4
mechanisms involved
4
involved combined
4
combined adverse
4
adverse effects
4
effects fine
4
fine particulate
4

Similar Publications

Background: Previous studies have suggested that the associations between ambient air pollution and atherosclerotic cardiovascular diseases (ASCVD) differ by genotype. A genome-wide approach provides a more comprehensive understanding of this relationship on a genomic scale.

Methods: Using data from ≈300 000 UK Biobank participants, we conducted a genome-wide interaction analysis on 10 745 802 variants.

View Article and Find Full Text PDF

This study introduces a back filter installed at the end of the exhaust pipe of city buses. The impact of the metal type used in its construction on the absorption of suspended particles and the reduction of sulfides in diesel engine exhaust gases is investigated. The back filter is constructed from three metals: copper, zinc, and nickel.

View Article and Find Full Text PDF

Long-range PM pollution and health impacts from the 2023 Canadian wildfires.

Nature

September 2025

State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.

Smoke from extreme wildfires in Canada adversely affected air quality in many regions in 2023. Here we use satellite observations, machine learning and a chemical transport model to quantify global and regional PM (particulate matter less than 2.5 μm in diameter) exposure and human health impacts related to the 2023 Canadian wildfires.

View Article and Find Full Text PDF

Submicron metal-bearing aerosols from an industrial hub of the North China Plain.

J Hazard Mater

September 2025

Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan. Electronic address:

Particulate matter emitted from heavy industries is a major source of atmospheric metals in the North China Plain (NCP). In this study, submicron particles (0.1-1.

View Article and Find Full Text PDF