Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Epigenetic dysregulation is widespread in cancer. However, the specific epigenetic regulators and the processes they control to drive cancer phenotypes are poorly understood. Here, we employed a novel, scalable and high-throughput method to perform iterative functional screens of over 250 epigenetic regulatory genes within autochthonous oncogenic KRAS-driven lung tumors. We identified multiple novel epigenetic tumor suppressor and tumor dependency genes. We show that a specific HBO1 complex and the MLL1 complex are among the most impactful tumor suppressive epigenetic regulators in lung. The histone modifications generated by the HBO1 complex are frequently absent or reduced in human lung adenocarcinomas. The HBO1 and MLL1 complexes regulate chromatin accessibility of shared genomic regions, lineage fidelity and the expression of canonical tumor suppressor genes. The HBO1 and MLL1 complexes are epistatic during lung tumorigenesis, and their functional correlation is conserved in human cancer cell lines. Together, these results demonstrate the value of quantitative methods to generate a phenotypic roadmap of epigenetic regulatory genes in tumorigenesis .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370414PMC
http://dx.doi.org/10.1101/2024.08.19.607671DOI Listing

Publication Analysis

Top Keywords

epigenetic regulators
12
hbo1 mll1
12
mll1 complexes
12
epigenetic regulatory
8
regulatory genes
8
tumor suppressor
8
hbo1 complex
8
epigenetic
7
tumor
5
hbo1
5

Similar Publications

Clonal hematopoiesis, originally identified as a precursor to hematologic malignancies, has emerged as a significant factor in various nonmalignant diseases. Recent research highlights how somatic mutations in hematopoietic stem cells lead to the expansion of circulating mutated immune cells that exert profound effects on organ function and disease progression. These mutated clones display altered inflammatory profiles and tissue-specific functional consequences, contributing to various diseases including atherosclerotic cardiovascular disease, osteoporosis, heart failure, and neurodegenerative conditions.

View Article and Find Full Text PDF

Crosstalk between leukemic cells and their surrounding mesenchymal stromal cells (MSCs) in the bone marrow microenvironment is crucial for the pathogenesis of myelodysplastic syndromes (MDS) and is mediated by extracellular vesicles (EVs). The EV-specific miRNAs derived from MDS-MSCs remain poorly explored. EVs isolated from HS-5, an immortalized stromal cell line, promoted the proliferation and 5-azacytidine (AZA) resistance of SKM-1 cells.

View Article and Find Full Text PDF

Cell type-specific regulatory programs that drive type 1 diabetes (T1D) in the pancreas are poorly understood. Here, we performed single-nucleus multiomics and spatial transcriptomics in up to 32 nondiabetic (ND), autoantibody-positive (AAB), and T1D pancreas donors. Genomic profiles from 853,005 cells mapped to 12 pancreatic cell types, including multiple exocrine subtypes.

View Article and Find Full Text PDF

Living with temperature changes: Salicylic acid at the crossroads of plant immunity and temperature resilience.

Sci Adv

September 2025

Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.

Salicylic acid (SA) is a key defense hormone shaped by temperature. High temperatures suppress, while low temperatures enhance, SA biosynthesis and signaling, thereby influencing plant immunity and temperature resilience. This review synthesizes current understanding of how temperature modulates SA pathways and their cross-talk with other hormones to balance growth and defense.

View Article and Find Full Text PDF

Transcription initiation factor TFIID subunit 1 (TAF1) is a pivotal component of the TFIID complex, critical for RNA polymerase II-mediated transcription initiation. However, the molecular basis by which TAF1 recognizes and associates with chromatin remains incompletely understood. Here, we report that the tandem bromodomain module of TAF1 engages nucleosomal DNA through a distinct positively charged surface patch on the first bromodomain (BD1).

View Article and Find Full Text PDF