Finding the rhythm: Humans exploit nonlinear intrinsic dynamics of compliant systems in periodic interaction tasks.

PLoS Comput Biol

Sensor Based Robotic Systems and Intelligent Assistance Systems, TUM School of Computation, Information and Technology, Technical University of Munich (TUM), Garching, Germany.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Activities like ball bouncing and trampoline jumping showcase the human ability to intuitively tune to system dynamics and excite motions that the system prefers intrinsically. This human sensitivity to resonance has been experimentally supported for interactions with simple linear systems but remains a challenge to validate in more complex scenarios where nonlinear dynamics cannot be predicted analytically. However, it has been found that many nonlinear systems exhibit periodic orbits similar to the eigenmodes of linear systems. These nonlinear normal modes (NNM) are computable with a recently developed numerical mode tool. Using this tool, the present resarch compared the motions that humans excite in nonlinear systems with the predicted NNM of the energy-conservative systems. In a user study consisting of three experiment parts, participants commanded differently configured virtual double pendula with joint compliance through a haptic joystick. The task was to alternately hit two targets, which were either aligned with the NNM (Experiments 1 and 2) or purposefully arranged offset (Experiment 3). In all tested experiment variations, participants intuitively applied a control strategy that excited the resonance and stabilized an orbit close to the ideal NNM of the conservative systems. Even for increased task accuracy (Experiment 2) and targets located away from the NNM (Experiment 3), participants could successfully accomplish the task, likely by adjusting their arm stiffness to alter the system dynamics to better align the resonant motions to the task. Consequently, our experiments extend the existing research on human resonance sensitivity with data-based evidence to nonlinear systems. Our findings emphasize the human capabilities to apply control strategies to excite and exploit resonant motions in dynamic object interactions, including possibly shaping the dynamics through changes in muscle stiffness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398697PMC
http://dx.doi.org/10.1371/journal.pcbi.1011478DOI Listing

Publication Analysis

Top Keywords

nonlinear systems
12
systems
8
system dynamics
8
linear systems
8
resonant motions
8
nonlinear
6
dynamics
5
nnm
5
experiment
5
finding rhythm
4

Similar Publications

Chaos theory, initially developed by Edward Lorenz, a mathematician and meteorologist at the Massachusetts Institute of Technology, has evolved from a theory of the natural and physical sciences to a theory that has broad, interdisciplinary applications. Fundamentally, chaos theory connects various scientific disciplines by explaining how seemingly random behaviors that happen in non-linear or "chaotic" systems, no matter how minor, can lead to major consequences. While forensic anthropology is often considered an a-theoretical subfield of anthropology, the discipline has witnessed a proliferation of theoretical publications in recent years.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.

Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.

View Article and Find Full Text PDF

Background: Dose-driven continuous scanning (DDCS) enhances the efficiency and precision of proton pencil beam delivery by reducing beam pauses inherent in discrete spot scanning (DSS). However, current DDCS optimization studies using traveling salesman problem (TSP) formulations often rely on fixed beam intensity and computationally expensive interpolation for move spot generation, limiting efficiency and methodological robustness.

Purpose: This study introduces a Break Spot-Guided (BSG) method, combined with two acceleration strategies-dose rate skipping and bounding-to optimize beam intensity while minimizing beam delivery time (BDT).

View Article and Find Full Text PDF

Background: Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.

View Article and Find Full Text PDF

The mesocorticolimbic system in stimulant use disorder.

Mol Psychiatry

September 2025

Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA.

Stimulant Use Disorder (StUD) is a pervasive and extremely dangerous form of addiction for which there are currently no approved medications. Discovering treatments will require a deep understanding of the neural mechanisms underlying the behavioral effects of stimulant drugs. A major target is the mesocorticolimbic system.

View Article and Find Full Text PDF