Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Exploring the level of intraspecific diversity in taxa experienced radiation is helpful to understanding speciation and biodiversity assembly. section sensu lato encompasses more than 180 species and occupies more a half of species in the genus. In this study, we collected samples across the range of three species (, and ) in section s.l., and recovered the intra-species variation by comparing with closely related taxon. Using 25 newly sequenced plastid genomes together with previously published data, we compared structural differences, quantified the variations in plastome size, and measured nucleotide diversity in various regions. Our results showed that the plastome size variation in the three species ranged from 285 to 628 bp, and the size variation in LSC, IR and SSC ranged from 236 to 898 bp, 52 to 393 bp and 135 to 356 bp, respectively. Nucleotide diversity of plastome or any of the four regions was much higher than the control species. The average nucleotide diversity in plastomes of the three species ranged from 0.0010 to 0.0023 in protein coding genes, and from 0.0023 to 0.0061 in intergenic regions. More repeat sequence variations were detected within the three species than the control species. Various plastid sequence matrixes resulted in different backbone topology in two target species, showed uncertainty in phylogenetic relationship based inference. In conclusion, our results recovered that species of section s.l. has high intraspecific plastome variation, and provided insights into the radiation in this speciose lineage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368500PMC
http://dx.doi.org/10.1002/ece3.70239DOI Listing

Publication Analysis

Top Keywords

three species
16
nucleotide diversity
12
species
10
plastid genomes
8
plastome size
8
size variation
8
species ranged
8
control species
8
variation
5
rampant intraspecific
4

Similar Publications

Erythrodontium julaceum, Marchantia polymorpha, and Plagiochila bantamensis are widely distributed bryophytes in Vietnam. However, comprehensive chemical and biological data on their composition remain limited. Bio-guided isolation based on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) M inhibition was applied to these species, resulting in the identification of 23 metabolites.

View Article and Find Full Text PDF

Microscale symbioses can be critical to ecosystem functions, but the mechanisms of these interactions in nature are often cryptic. Here, we use a combination of stable isotope imaging and tracing to reveal carbon (C) and nitrogen (N) exchanges among three symbiotic primary producers that fuel a salmon-bearing river food web. Bulk isotope analysis, nanoSIMS (secondary ion mass spectrometry) isotope imaging, and density centrifugation for quantitative stable isotope probing enabled quantification of organism-specific C- and N-fixation rates from the subcellular scale to the ecosystem.

View Article and Find Full Text PDF

Biological findings from a newly developed photo-identification catalog for the critically endangered Rice's whale (Balaenoptera ricei).

PLoS One

September 2025

Marine Mammal and Turtle Division, Southeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Miami, Florida, United States of America.

The Rice's whale is among the world's most endangered whales. It has a small population size, low genetic diversity, and is exposed to several anthropogenic threats. In this study, we compiled photographs taken from whale sightings during vessel-based research surveys conducted by the U.

View Article and Find Full Text PDF

P-Doped Cu-N-C Single-Atom Catalysts Boost Cathodic Electrochemiluminescence of Luminol for MicroRNA-320d Detection.

Anal Chem

September 2025

Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.

Compared with efficient anodic luminol electrochemiluminescence (ECL), the disadvantage of cathodic ECL is that luminol cannot be electrochemically oxidized in a direct manner, and the conversion efficiency of dissolved oxygen (DO) as the coreactant to reactive oxygen species (ROS) is poor, which limits its application. Therefore, it is necessary to develop a functional catalyst suitable for the luminol-DO ECL system to directly trigger cathodic ECL. In this study, a coordination microenvironment modulation strategy was proposed.

View Article and Find Full Text PDF

The anaerobic glycyl radical enzyme choline trimethylamine-lyase (CutC) is produced by multiple bacterial species in the human gut microbiome and catalyzes the conversion of choline to trimethylamine (TMA) and acetaldehyde. CutC has emerged as a promising therapeutic target due to its role in producing TMA, which is subsequently oxidized in the liver to form trimethylamine--oxide (TMAO). Elevated TMAO levels are associated with several human diseases, including atherosclerosis and other cardiovascular disorders─a leading cause of mortality worldwide.

View Article and Find Full Text PDF