98%
921
2 minutes
20
Carbon dots (CDs) are fluorescent carbon-based nanomaterials with remarkable properties, making them more attractive than traditional fluorophores. Consequently, researchers focused on their development and application in fields such as sensing and bioimaging. One potential advantage of employing CDs is using organic waste as carbon precursors in their synthesis, providing a pathway for waste upcycling for a circular economy. However, waste-based CDs often have low fluorescence quantum yields (QY), limiting their practical applications. So, there is a need for a well-defined strategy to consistently produce waste-based CDs with appreciable QY, irrespective of the starting waste material. Herein, we developed a fabrication strategy based on the hydrothermal treatment of waste materials, using citric acid as a co-carbon precursor and ethylenediamine as N-dopant. This strategy was tested with various materials, including corn stover, spent coffee grounds, cork powder, and sawdust. The results showed consistently appreciable QY, reaching up to ~40 %. A Life Cycle Assessment (LCA) study demonstrated that producing these waste-based CDs has lower environmental impacts compared to CDs made solely from commercial reagents. Thus, we have established a framework for the environmentally friendly production of CDs by upcycling different waste materials without significant sacrifices in performance (QY).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202401702 | DOI Listing |
Arch Environ Contam Toxicol
September 2025
Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, 1015, Lausanne, Switzerland.
Pollution from past industrial activities can remain unnoticed for years or even decades because the pollutant has only recently gained attention or been identified by measurements. Modeling the emission history of pollution is essential for estimating population exposure and apportioning potential liability among stakeholders. This paper proposes a novel approach for reconstructing the history of polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofuran (PCDF) pollution from municipal solid waste incinerators (MSWIs) with unknown past emissions.
View Article and Find Full Text PDFFood Sci Biotechnol
October 2025
Department of Food Process Engineering, National Institute of Technology (NIT), Rourkela, 769008 Odisha India.
Unlabelled: Propolis, or bee glue, is a resinous substance produced by honeybees from plant resins, rich in bioactive compounds with antimicrobial, antioxidant, anti-cancer, anti-inflammatory, and anti-cavity properties. These qualities make it a valuable natural preservative in the food industry, extending shelf life and preventing spoilage. Propolis has gained attention as an alternative to synthetic preservatives.
View Article and Find Full Text PDFACS Omega
September 2025
Nanohybrids and Innovation Coating Research Group (NHIC), National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathumthani 12120, Thailand.
Using leaf fibers from pineapple (PALFs) as a model dual-purpose plant, we deliberately explore the effect of bio- and semibiobased treatment using xylanase, cellulase, and a mixture of pectinase and amylase. We assess these treatments for their potential to selectively and precisely remove lignocellulosic components. Additionally, we examine how they modify the relative content of cellulose, hemicellulose, and lignin, as these are key factors affecting the physical appearance, dimensional structures, and mechanical integrity.
View Article and Find Full Text PDFACS Omega
September 2025
School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), H-12, Islamabad 44000, Pakistan.
In this study, we present an indigenous approach to enhancing the properties of Pb-(ZrTi)-O by synthesizing it from β-PbO obtained from spent lead-acid batteries. Initially, β-PbO, orthorhombic massicot, was produced by two-step heating, and 99.9% lead powder was derived from recovered lead-acid batteries at 700 °C.
View Article and Find Full Text PDFACS Omega
September 2025
Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chao Yang District, Beijing 100013, P. R. China.
With the rapid development of precision medicine and the continuous evolution of smart wearable devices, photothermal materials (PTMs) are experiencing a tremendous opportunity for growth. PTMs can efficiently convert light energy into heat to achieve localized thermal therapy for specific cells or tissues, offering advantages of minimal invasiveness, high selectivity, and precise targeting. Furthermore, PTMs can serve as molecular imaging probes and smart drug carriers, integrating multiple functions such as bioimaging and drug delivery to realize the visualization and controlled release of therapeutic processes.
View Article and Find Full Text PDF