98%
921
2 minutes
20
The goal of this study was to use coevaporation to look into how polyether compounds like mephenesin (MEP) can be encapsulated into the host molecule α-cyclodextrin's nanohydrophobic cage. Fourier transform infrared spectroscopy (FT-IR) investigations, powder X-ray diffraction (PXRD), and H NMR were among the spectroscopic techniques used to describe the inclusion complex. Additionally, Job's plot has been utilized to illustrate how MEP is encapsulated with α-cyclodextrin (α-CD) at a 1:1 molar ratio. The thermal stability of MEP increased after encapsulation according to thermogravimetric analysis (TGA) and differential thermal analysis (DTA) experiments. Mephenesin fits into the cavity of α-cyclodextrin in a 1:1 ratio, as observed by molecular docking for the inclusion complex to find the most appropriate orientation. This observation is further supported by the Job plot. Furthermore, a comparison was carried out based on a cell viability study between the medication and its inclusion complex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11359629 | PMC |
http://dx.doi.org/10.1021/acsomega.3c08185 | DOI Listing |
Crit Care Sci
September 2025
Universitätsklinikum Carl Gustav Carus - Dresden, Sachsen, Germany.
The PROtective VEntilation (PROVE) Network is a globally-recognized collaborative research group dedicated to advancing research, education, and collaboration in the field of mechanical ventilation. Established to address critical questions in intraoperative and intensive care ventilation, the network focuses on improving outcomes for patients undergoing mechanical ventilation in diverse settings, including operating rooms, intensive care units, burn units, and resource-limited environments in low- and middle-income countries. The PROVE Network is committed to generating high-quality evidence through a comprehensive portfolio of investigations, including randomized clinical trials, observational research, and meta-analyses.
View Article and Find Full Text PDFPLOS Glob Public Health
September 2025
Department of International Health, Center for Humanitarian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America.
Humanitarian crises, particularly in conflict zones, create cascading disruptions that impact every aspect of daily life, including health and disease outcomes. While international humanitarian frameworks categorize these crises into discrete operational clusters, affected populations experience them as interwoven, systemic failures. This study examines how conflict-induced disruptions transform a preventable and typically self-limiting disease-Hepatitis A-into a fatal outcome.
View Article and Find Full Text PDFPhytopathology
September 2025
Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Xinong Road #22, Yangling, Shaanxi, China, 712100.
head blight (FHB), caused by the FHB species complex, is one of the most damaging diseases affecting wheat. Accurately predicting FHB occurrence prior to infection is crucial for preventing outbreaks, minimizing crop losses, and reducing the risks of mycotoxins entering the food chain. This study utilized 55 years of historical weather data and the level of primary inoculum in crop debris to predict FHB severity.
View Article and Find Full Text PDFSleep Breath
September 2025
School of medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
Introduction: It is well known that Obstructive Sleep Apnea (OSA) is a complex disease characterized by an Upper Airway (UA) collapse during sleep, with potential consequences on ENT districts. Recent evidence suggests a possible association with Eustachian Tube Dysfunction (ETD). However, the potential effects of both surgical and non-surgical therapeutic strategies on ET function remain poorly explored in the current literature.
View Article and Find Full Text PDFDiabetologia
September 2025
Department of Diabetology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.
This review article, developed by the EASD Global Council, addresses the growing global challenges in diabetes research and care, highlighting the rising prevalence of diabetes, the increasing complexity of its management and the need for a coordinated international response. With regard to research, disparities in funding and infrastructure between high-income countries and low- and middle-income countries (LMICs) are discussed. The under-representation of LMIC populations in clinical trials, challenges in conducting large-scale research projects, and the ethical and legal complexities of artificial intelligence integration are also considered as specific issues.
View Article and Find Full Text PDF