98%
921
2 minutes
20
Variants in , encoding the voltage- and calcium-activated K (BK) channel, are associated with human neurological disease. The effects of gain-of-function (GOF) and loss-of-function (LOF) variants have been predominantly studied on BK channel currents evoked under steady-state voltage and Ca conditions. However, in their physiological context, BK channels exist in partnership with voltage-gated Ca channels and respond to dynamic changes in intracellular Ca (Ca). In this study, an L-type voltage-gated Ca channel present in the brain, Ca1.2, was co-expressed with wild type and mutant BK channels containing GOF (D434G, N999S) and LOF (H444Q, D965V) patient-associated variants in HEK-293T cells. Whole-cell BK currents were recorded under Ca1.2 activation using buffering conditions that restrict Ca to nano- or micro-domains. Both conditions permitted wild type BK current activation in response to Ca1.2 Ca influx, but differences in behavior between wild type and mutant BK channels were reduced compared to prior studies in clamped Ca. Only the N999S mutation produced an increase in BK current in both micro- and nano-domains using square voltage commands and was also detectable in BK current evoked by a neuronal action potential within a microdomain. These data corroborate the GOF effect of N999S on BK channel activity under dynamic voltage and Ca stimuli, consistent with its pathogenicity in neurological disease. However, the patient-associated mutations D434G, H444Q, and D965V did not exhibit significant effects on BK current under Ca1.2-mediated Ca influx, in contrast with prior steady-state protocols. These results demonstrate a differential potential for variant pathogenicity compared under diverse voltage and Ca conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370921 | PMC |
http://dx.doi.org/10.1080/19336950.2024.2396346 | DOI Listing |
J Biomed Sci
September 2025
Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
Background: PPM1D (protein phosphatase Mg⁺/Mn⁺ dependent 1D) is a Ser/Thr phosphatase that negatively regulates p53 and functions as an oncogenic driver. Its gene amplification and overexpression are frequently observed in various malignancies and disruption of PPM1D degradation has also been reported as a cause of cancer progression. However, the precise mechanisms regulating PPM1D stability remain to be elucidated.
View Article and Find Full Text PDFNeotrop Entomol
September 2025
Lab of Virology, National Institute of Agricultural Research (INRA), Kenitra, Morocco.
The argan tree (Argania spinosa L. Skeels), native to the sub-Saharan region of Morocco, is an endangered agroforestry species renowned for producing one of the world's most expensive and sought-after oils. However, this valuable resource is threatened by the Mediterranean fruit fly (Ceratitis capitata (Wied.
View Article and Find Full Text PDFTheor Appl Genet
September 2025
Leibniz Institute of Plant Genetics and Crop Research (IPK), 06466, Gatersleben, Germany.
To breed for climate resilient crops, an understanding of the genetic and environmental factors influencing adaptation is critical. Barley provides a model species to study adaptation to climate change. Here we present a detailed analysis of genetic variation at a major photoperiod response locus and relate this to the domestication history and dispersal of barley.
View Article and Find Full Text PDFJ Neurosci
September 2025
Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada, B3H4R2
At the glutamatergic synapses between rod photoreceptors and ON-type bipolar cells, neurotransmitter is detected by the postsynaptic metabotropic glutamate receptor mGluR6. This receptor forms trans-synaptic interactions with ELFN1, a presynaptic cell adhesion molecule expressed in rods, and ELFN1 is important for mGluR6 localization at bipolar cell dendritic tips. Here, we show that in mice of either sex lacking mGluR6, the presynaptic localization of ELFN1 is disrupted.
View Article and Find Full Text PDFSci Bull (Beijing)
August 2025
Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Reciprocity is considered one of the vital mechanisms that sustain the evolution of cooperative behavior. However, free-riding, where assistance is received but not reciprocated, poses a serious threat to reciprocity behavior, which relies on future payback. Previous theories proposed that third-party punishment plays a vital role in preventing free-riding behavior.
View Article and Find Full Text PDF