98%
921
2 minutes
20
Cancer is a global issue and hence various efforts are being made. Iron oxide is considered a significant biochemical agent in the biomedical arena for cancer treatment. Marine macroalgae-mediated iron oxides especially, magnetite (FeO) nanoparticles (NPs) are a prospective alternative to diagnose and treat cancer owing to their fluorescent and magnetic properties. We intend to appraise the usability of the aqueous extract of Rosenvingea intricata (R. intricata) in FeO NPs synthesis and to study their cytotoxic effects against human hepatocarcinoma (Hep3B) and pancreatic (PANC1) cancer cells. In the present study, R. intricata were collected from the coastal region of South Andaman, India. Aqueous extracts of R. intricata were utilized to synthesize FeO NPs via the co-precipitation method. Phycosynthesized FeO NPs exhibited wide peak at 400-600 nm from ultraviolet-visible diffused reflectance spectroscopic analysis which validated the formation of NPs. Band edge emission peak at 660 nm in fluorescent spectra confirmed the quantum confinement in FeO NPs. Fourier transform infrared spectroscopy confirmed the role of R. intricata as a capping and reducing agent with functional groups such as O-H, C-H, C=O, N=O, C=C, C-O, C-N, and C-S arising from amino acids, polysaccharides, aliphatic hydrocarbons, esters, amides, lignins, alkanes, aliphatic amines, and sulfates. Physicochemical properties such as crystallite size (14.36 nm), hydrodynamic size (84.6 nm), irregular morphology, elemental composition, particle size (125 nm), crystallinity, and saturation magnetization (0.90007 emu/g) were obtained from x-ray diffractometer, dynamic light scattering, scanning electron microscopy, energy dispersive x-ray spectrometer, high-resolution transmission electron microscopy, selected area electron diffraction and vibrating sample magnetometer techniques, respectively. The cell viability showed dose-dependent cytotoxic effects and enhanced the apoptosis against Hep3B and PANC1 cancer cells. R. intricata extract capped FeO NPs could be the most appropriate and effective nanomaterial for cancer treatment and management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364866 | PMC |
http://dx.doi.org/10.1038/s41598-024-67820-1 | DOI Listing |
Antonie Van Leeuwenhoek
September 2025
Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia.
Synthetic dyes, such as methylene blue (MB), are increasingly becoming sources of water pollution and require better treatment strategies. This study describes an eco-friendly method for methylene blue degradation using green synthesized iron oxide nanoparticles form Ureibacillus chungkukjangi. This bacterium was isolated from clinical samples and identified using 16S rRNA gene amplification and sequenced using Sanger sequencing technology.
View Article and Find Full Text PDFEnviron Pollut
July 2025
School of Public Administration, Hohai University, Nanjing, 211000, China; Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, Ministry of Natural Resources, Nanjing, 210009, China. Electronic address:
Soil contamination with toxic heavy metals such as cadmium (Cd) is becoming a serious global problem due to rapid industrial and agriculture expansion. Although nanoparticles (NPs) and plant growth-promoting rhizo-bacteria (PGPR) are the major protectants to alleviate metal toxicity. A pot experiment was conducted under controlled conditions by using sand, mixed with different levels of Cd i.
View Article and Find Full Text PDFSci Rep
July 2025
Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
This study presents a microwave-solvothermal green synthesis of magnetite (Fe₃O₄) nanoparticles (NPs) using Hippophae rhamnoides berry extract and evaluates their selective anticancer activity. The NPs exhibited a crystalline structure (XRD peaks matching JCPDS Card No. 88-0315), superparamagnetic properties (VSM: saturation magnetization 40.
View Article and Find Full Text PDFPlant Physiol Biochem
July 2025
Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, 453000, China. Electronic address:
Soil salinization constitutes a major constraint to agricultural sustainability worldwide, with elevated sodium chloride levels inducing complex physiological disruptions that compromise crop productivity. As an innovative approach to abiotic stress mitigation, iron oxide nanoparticles (FeO-NPs) demonstrate unique advantages in enhancing iron bioavailability and modulating plant stress responses. This investigation systematically evaluated the efficacy of FeO-NPs in ameliorating NaCl-induced stress (150 mM) in peanut (Arachis hypogaea L.
View Article and Find Full Text PDFExp Parasitol
August 2025
Laboratory of Parasitology, Vector Biology, Nanotechnology, Department of Zoology, The University of Gour Banga, Malda, 732103, West Bengal, India. Electronic address:
The recurring global outbreaks of mosquito-borne diseases and the lack of vaccines, and preventive therapeutic approaches to combat diseases coupled with insecticide resistance, eventually emphasize the necessity of developing biological system-focused mosquito control strategies. In the present study, aqueous leaf extract from the Phyllanthus acidus L. plant was used to synthesize the metal nanoparticles (MNPs) such as silver, copper oxide, iron oxide, and zinc oxide, characterization has been carried out and their efficacies were also tested against the early 3rd instar larvae of the major mosquito vectors.
View Article and Find Full Text PDF