Associations between exposure to brominated flame retardants and periodontitis in U.S. adults.

Chemosphere

Department of Vascular Surgery, Shanghai Putuo People's Hospital, School of Medicine, Tongji University, No.1291 Jiangning Road, Huangpu District, Shanghai, 200060, China; Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Huangpu D

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Increasing evidence has shown that environmental factors play a crucial role in the pathogenesis of periodontitis. Humans are simultaneously exposed to a variety of environmental brominated flame retardants (BFRs). However, the relationship between BFRs in periodontitis remains unclear. This study aimed to investigate the overall association between BFRs and periodontitis in a nationally representative US population and to further identify important chemicals.

Methods: Data from 3322 NHANES participants from 2009 to 2016 were used. Serum BFRs were registered, including PBDE-28, PBDE-47, PBDE-85, PBDE-99, PBDE100, PBDE-153, PBDE-154, PBDE-183, PBDE-209 and PBB-153. Survey weighted generalized logistic regression models, restricted cubic splines (RCS) were conducted to assess single BFRs exposure with periodontitis. Meanwhile, weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were used to evaluate the overall association of BFRs mixtures with periodontitis and to identify significant chemicals.

Results: A total of 3322 participants were included in the study, of whom 1795 had periodontitis. After adjusting for potential confounders, multiple logistic regression analysis revealed significant positive associations between serum levels of PBDE-28, PBDE-47, PBDE-85, PBDE-99, PBDE-100, PBDE-154, PBDE-183, and PBB-153 and the risk of periodontitis (all P < 0.05). A dose-response relationship was observed for many of these BFRs, with higher quantiles associated with an increased risk of periodontitis. WQS regression identified PBDE-183 (38.60%), PBDE-153 (21.20%), PBDE-209 (14.40%), and PBDE-99 (11.90%) as the BFRs with the largest weights contributing to the overall mixture effect on periodontitis risk. BKMR analysis further supported the positive association between serum BFRs and periodontitis, with most individual BFRs showing a positive trend, except for PBDE-153. Restricted cubic spline analysis revealed a generally increasing probability of periodontitis with increasing concentrations of BFRs, albeit with some nonlinear patterns for certain compounds.

Conclusion: In conclusion, this study provides compelling evidence of a significant association between exposure to brominated flame retardants (BFRs) and an increased risk of periodontitis in a nationally representative sample of U.S. adults. Elevated serum levels of several BFRs, including PBDE-28, PBDE-47, PBDE-85, PBDE-99, PBDE-100, PBDE-154, PBDE-183, and PBB-153, were found to be positively associated with periodontitis, exhibiting a dose-response relationship.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.143181DOI Listing

Publication Analysis

Top Keywords

brominated flame
8
flame retardants
8
periodontitis
8
bfrs periodontitis
8
association bfrs
8
pbde-28 pbde-47
8
pbde-47 pbde-85
8
pbde-85 pbde-99
8
pbde-154 pbde-183
8
logistic regression
8

Similar Publications

Risk Assessment from Potential Exposure to Tetrabromobisphenol A (TBBPA) from Its Use in Electronics.

Food Chem Toxicol

September 2025

Science Strategies, LLC, PMB 1111, 2795 E. Cottonwood Parkway, Suite 300, Salt Lake City, UT 84121.

Tetrabromobisphenol A (TBBPA) is the most extensively used brominated flame retardant worldwide, primarily employed reactively in printed circuit boards and additively in plastic housings of electronic equipment. This study systematically evaluates human exposure to TBBPA from electronic devices and characterizes associated risks. A targeted literature review of 55 peer-reviewed studies published over the past 25 years was conducted, focusing on global TBBPA occurrence in environmental media, occupational and residential settings, and biological matrices.

View Article and Find Full Text PDF

Compound-specific stable carbon and bromine isotope analysis tracking transformation mechanisms of organobrominated contaminants: a review of principles, methodologies and applications.

Environ Sci Process Impacts

September 2025

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

Organobrominated contaminants, such as brominated flame retardants (BFRs), pose significant environmental risks due to their persistence, toxicity, and complex transformation pathways. Compound-specific stable isotope analysis (CSIA) of carbon (C) and bromine (Br) has emerged as a powerful tool to elucidate degradation mechanisms, particularly debromination processes that are critical to understanding environmental fate. This review synthesizes principles, methodologies, and applications of CSIA-C/Br for tracking the transformation of organobrominated pollutants, emphasizing advances in overcoming analytical challenges.

View Article and Find Full Text PDF

The compound risk of decabromodiphenyl ethane and cadmium to soil nutrient cycling in agroecosystems: Linking the enzyme, microbial community, gene networks to plant stress.

J Hazard Mater

September 2025

State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China. Electronic address:

Soil serves as the habitat for numerous organisms and is increasingly threatened from co-pollution of novel brominated flame retardant (NBFRs) and heavy metals (HMs). Focusing on Deca-bromodiphenyl ethane (DBDPE) and cadmium (Cd) as the targets, we constructed a soil-lettuce-earthworm microcosm to explore co-pollution effects in rhizosphere soils. Results showed that DBDPE increased bioavailable Cd fraction to amplified its ecological risks.

View Article and Find Full Text PDF

Background: Persistent Organic Pollutants (POP), including polychlorinated biphenyls (PCBs) and organochlorine pesticides, are established neurotoxicants in experimental models; yet it remains uncertain whether exposures in the general population increase the risk to develop brain aging pathologies. We assessed the prospective associations of plasma POP concentrations with three dementia-related outcomes in a population-based cohort of older adults.

Methods: Analyses included 515 participants from the Three-City Study, free of dementia at baseline at the time of blood measurements (1999-2000, mean age 72.

View Article and Find Full Text PDF

Tetrabromophthalate bis(2-ethylhexyl) ester (TBPH) is a common brominated flame retardant, which exhibits environmental persistence, the potential for bioaccumulation, and concerning toxicological effects. But until now, there is limited data on TBPH-induced nephrotoxicity. Therefore, this study assessed the impact of TBPH exposure on renal cells and tissues through in vitro and in vivo models.

View Article and Find Full Text PDF