A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Sensitive colorimetric detection of Escherichia coli in milk using Au@Ag core-shell nanoparticles. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Escherichia coli (E. coli) is a prevalent pathogen that is frequently associated with the foodborne illness. It causes various infections and poses a significant threat to human health. A rapid and sensitive assay for detecting E. coli is essential for timely diagnosis. Herein, a simple and sensitive colorimetric analysis method for detecting E. coli was developed based on the formation of Au@Ag core-shell nanoparticles facilitated by p-benzoquinone (BQ). E. coli reduced p-benzoquinone to generate hydroquinone (HQ), which could reduce the added Tollens' reagent to silver elemental and grow on the surface of gold nanoparticles (AuNPs). As the E. coli concentration increased, the silver layer thickess on the AuNPs surface growed, resulting in a stronger silver absorption peak observed at 390 nm. The color of the solution changed from red to orange, which could be used to detect E. coli by the naked eye. As a result, E. coli was detected with a linear range from 1.0 × 10 to 1.0 × 10 CFU/mL based on the absorbance intensity. In addition, this method accurately detected E. coli in real milk sample, demonstrating promising applications in foodborne pathogen detection. With satisfactory accuracy, the proposed colorimetric method holds excellent prospects in detecting pathogens in actual food samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2024.126783DOI Listing

Publication Analysis

Top Keywords

coli
10
sensitive colorimetric
8
escherichia coli
8
au@ag core-shell
8
core-shell nanoparticles
8
detecting coli
8
colorimetric detection
4
detection escherichia
4
coli milk
4
milk au@ag
4

Similar Publications