Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Carboxysomes are proteinaceous organelles featuring icosahedral protein shells that enclose the carbon-fixing enzymes, ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco), along with carbonic anhydrase. The intrinsically disordered scaffolding protein CsoS2 plays a vital role in the construction of α-carboxysomes through bridging the shell and cargo enzymes. The N-terminal domain of CsoS2 binds Rubisco and facilitates Rubisco packaging within the α-carboxysome, whereas the C-terminal domain of CsoS2 (CsoS2-C) anchors to the shell and promotes shell assembly. However, the role of the middle region of CsoS2 (CsoS2-M) has remained elusive. Here, we conducted in-depth examinations on the function of CsoS2-M in the assembly of the α-carboxysome shell by generating a series of recombinant shell variants in the absence of cargos. Our results reveal that CsoS2-M assists CsoS2-C in the assembly of the α-carboxysome shell and plays an important role in shaping the α-carboxysome shell through enhancing the association of shell proteins on both the facet-facet interfaces and flat shell facets. Moreover, CsoS2-M is responsible for recruiting the C-terminal truncated isoform of CsoS2, CsoS2A, into α-carboxysomes, which is crucial for Rubisco encapsulation and packaging. This study not only deepens our knowledge of how the carboxysome shell is constructed and regulated but also lays the groundwork for engineering and repurposing carboxysome-based nanostructures for diverse biotechnological purposes.

Importance: Carboxysomes are a paradigm of organelle-like structures in cyanobacteria and many proteobacteria. These nanoscale compartments enclose Rubisco and carbonic anhydrase within an icosahedral virus-like shell to improve CO fixation, playing a vital role in the global carbon cycle. Understanding how the carboxysomes are formed is not only important for basic research studies but also holds promise for repurposing carboxysomes in bioengineering applications. In this study, we focuses on a specific scaffolding protein called CsoS2, which is involved in facilitating the assembly of α-type carboxysomes. By deciphering the functions of different parts of CsoS2, especially its middle region, we provide new insights into how CsoS2 drives the stepwise assembly of the carboxysome at the molecular level. This knowledge will guide the rational design and reprogramming of carboxysome nanostructures for many biotechnological applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481516PMC
http://dx.doi.org/10.1128/mbio.01358-24DOI Listing

Publication Analysis

Top Keywords

α-carboxysome shell
16
scaffolding protein
12
shell
12
csos2
9
protein csos2
8
rubisco carbonic
8
carbonic anhydrase
8
vital role
8
domain csos2
8
middle region
8

Similar Publications

Biotic interactions-and predation in particular-are thought to follow a latitudinal gradient, increasing towards the tropics; yet empirical evidence remains contradictory and largely based on studies from the Northern Hemisphere. Moreover, the role of environmental variables shaping latitudinal gradients of predation intensity has seldom been tested. Here, we quantify predation by shell-breaking crabs on modern shells of the marine gastropod along a latitudinal gradient (40°-54° S) on the southwestern Atlantic coast.

View Article and Find Full Text PDF

A free radical polymerization approach was applied to synthesize different carboxymethyl cellulose-grafted poly(acrylamide) hydrogels (Hyd) composited with biochar, magnetic biochar, and magnetic biochar decorated with ZIF-67 to decontaminate methylene blue (MB) from water media. Biochar was obtained from walnut shells (WS) by a pyrolysis method, and magnetic biochar (WS/CoFeO) and biochar-decorated ZIF-67 (WS/CoFeO/ZIF-67) were prepared by chemical co-precipitation and hydrothermal methods, respectively. An increase in the amount of these particles by up to 10 wt% enhanced the removal performance.

View Article and Find Full Text PDF

Root-knot nematodes (RKNs), particularly , are one of the most destructive plant-parasitic nematodes (PPNs) affecting crop production worldwide. Previous earlier study revealed that calcinated oyster shell powder (OSP) possessed excellent suppression of tobacco RKN disease. However, the suppression mechanism of OSP against RKNs still remains unrevealed.

View Article and Find Full Text PDF

Crab shell polypeptides enhance calcium dynamics and osteogenic activity in osteoporosis.

Front Pharmacol

August 2025

Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.

Background: Osteoporosis (OP) is a chronic, systemic skeletal disorder characterized by progressive bone loss and microarchitectural deterioration, which increases fracture susceptibility and presents a challenging set of global healthcare problems. Current pharmacological interventions are limited by adverse effects, high costs, and insufficient long-term efficacy. Here, we identify snow crab shell-derived polypeptides (SCSP) as a potent osteoprotective agent.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a common clinical syndrome characterized by abnormal renal function and structure. Microcirculatory perfusion disorders and inflammatory responses are critical pathophysiologies of AKI. Recently, ultrasound molecular imaging has been considered a valuable tool for preclinical and clinical diagnostics that can sensitively target histological structures of interest, particularly in evaluating renal microcirculation.

View Article and Find Full Text PDF