98%
921
2 minutes
20
Sarcopenia, a condition caused by an imbalance between muscle growth and loss, can severely affect the quality of life of elderly patients with metabolic, inflammatory, and cancer diseases. Vigeo, a nuruk-fermented extract of three plants ( Maxim (ESM), (Miq.) Nakai (AJN), and Koidzumi (AJK)) has been reported to have anti-osteoporotic effects. However, evidence of the effects of Vigeo on muscle atrophy is not available. Here, in the in vivo model of dexamethasone (Dex)-induced muscle atrophy, Vigeo treatment significantly reversed Dex-induced decreases in calf muscle volume, gastrocnemius (GA) muscle weight, and histological cross-section area. In addition, in mRNA and protein analyses isolated from GA muscle, we observed that Vigeo significantly protected against Dex-induced mouse muscle atrophy by inhibiting protein degradation regulated by atrogin and MuRF-1. Moreover, we demonstrated that Vigeo significantly promoted C2C12 cell line differentiation, as evidenced by the increased width and length of myotubes, and the increased number of fused myotubes with three or more nuclei. Vigeo alleviated the formation of myotubes compared to the control group. Vigeo also significantly increased the mRNA and protein expression of myosin heavy chain (MyHC), MyoD, and myogenin compared to that in the control. Vigeo treatment significantly reduced the mRNA and protein expression of muscle degradation markers atrogin-1 and muscle RING Finger 1 (MuRF-1) in the C2C12 cell line in vitro. Vigeo also activated the AMP-activated protein kinase (AMPK)/silent information regulator 1 (Sirt-1)/peroxisome proliferator-activated receptor-γ co-activator-1α (PGC1α) mitochondrial biogenesis pathway and the Akt/mTOR protein synthesis signaling pathway in Dex-induced myotube atrophy. These findings suggest that Vigeo may have protective effects against Dex-induced muscle atrophy. Therefore, we propose Vigeo as a supplement or potential therapeutic agent to prevent or treat sarcopenia accompanied by muscle atrophy and degeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357481 | PMC |
http://dx.doi.org/10.3390/nu16162687 | DOI Listing |
PLoS One
September 2025
Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
Background: Metabolic syndrome (MetS) and sarcopenia are major global public health problems, and their coexistence significantly increases the risk of death. In recent years, this trend has become increasingly prominent in younger populations, posing a major public health challenge. Numerous studies have regarded reduced muscle mass as a reliable indicator for identifying pre-sarcopenia.
View Article and Find Full Text PDFJ Clin Invest
September 2025
Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.
Few drugs are available for rare diseases due to economic disincentives. However, tailored medications for extremely-rare disorders (N-of-1) offer a ray of hope. Artificial antisense oligonucleotides (ASOs) are now best known for their use in spinal muscular atrophy (SMA).
View Article and Find Full Text PDFJCI Insight
September 2025
Edinburgh Medical School: Biomedical Sciences & Euan MacDonald Centre for M, University of Edinburgh, Edinburgh, United Kingdom.
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by low levels of SMN protein. Several therapeutic approaches boosting SMN are approved for human patients, delivering remarkable improvements in lifespan and symptoms. However, emerging phenotypes, including neurodevelopmental comorbidities, are being reported in some treated SMA patients, indicative of alterations in brain development.
View Article and Find Full Text PDFJ Oral Rehabil
September 2025
Division of Functional Oral Neuro Science, Graduate School of Dentistry, The University of Osaka, Osaka, Japan.
Background: Older adults have decreased swallowing-related muscle mass, which may lead to decreased swallowing function. One of the causes of this decrease in muscle mass in older adults is a decrease in swallowing frequency.
Objective: The purpose of this study was to evaluate the relationship between swallowing frequency and swallowing-related muscle mass.
Mol Genet Genomic Med
September 2025
Department of Maternal-Fetal Medicine, Augusta University, Augusta, Georgia, USA.
Introduction: Spinal muscular atrophy (SMA), caused by pathogenic variants in the survival motor neuron (SMN) gene, is the most common genetic cause of mortality in children under the age of two. Prior reports of obstetric sonograms performed in pregnancies with severe forms of fetal SMA have discrepant findings that may stem from a failure to account for the SMN2 copy number.
Methods: We present a neonate diagnosed with SMA type 0 postnatally (0SMN1/1SMN2 genotype).