98%
921
2 minutes
20
The interest in hydrogen is rapidly expanding because of rising greenhouse gas emissions and the depletion of fossil resources. The current work focuses on employing affordable Al alloys for hydrogen production and storage to identify the most efficient alloy that performs best in each situation. In the first part of this work, hydrogen was generated from water electrolysis. The Al alloys that are being examined as electrodes in a water electrolyzer are 1050-T0, 5052-T0, 6061-T0, 6061-T6, 7075-T0, 7075-T6, and 7075-T7. The flow rate of hydrogen produced, energy consumption, and electrolyzer efficiency were measured at a constant voltage of 9 volts to identify the Al alloy that produces a greater hydrogen flow rate at higher process efficiency. The influence of the electrode surface area and water electrolysis temperature were also studied. The second part of this study examines these Al alloys' resistance to hydrogen embrittlement for applications involving compressed hydrogen gas storage, whether they are utilized as the primary vessel in Type 1 pressure vessels or as liners in Type 2 or Type 3 pressure vessels. Al alloys underwent electrochemical charging by hydrogen and Charpy impact testing, after which a scanning electron microscope (SEM) was used to investigate the fracture surfaces of both uncharged and H-charged specimens. The structural constituents of the studied alloys were examined using X-ray diffraction analysis and were correlated to the alloys' performance. Sensitivity analysis revealed that the water electrolysis temperature, electrode surface area, and electrode material type ranked from the highest to lowest in terms of their influence on improving the efficiency of the hydrogen production process. The 6061-T0 Al alloy demonstrated the best performance in both hydrogen production and storage applications at a reasonable material cost.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356602 | PMC |
http://dx.doi.org/10.3390/ma17164032 | DOI Listing |
Chem Commun (Camb)
September 2025
University of Belgrade-Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, Rebublic of Serbia.
Carbon aerogels and xerogels, with their 3D porous architectures, ultralow density, high surface area, and excellent conductivity, have emerged as multifunctional materials for energy and environmental applications. This review highlights recent advances in the synthesis of these materials polymerisation, drying, and carbonisation, as well as the role of novel precursors such as graphene, carbon nanotubes, and biomass. Emphasis is also placed on doped and metal-decorated carbon gels as efficient electrocatalysts for oxygen reduction reactions, enabling four- and two-electron pathways for energy conversion and the production of green HO, respectively.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.
The donor/acceptor (D/A) interfaces in bulk heterojunction (BHJ) organic solar cells (OSCs) critically govern exciton dissociation and molecular diffusion, determining both efficiency and stability. Herein, we design a double-cable conjugated polymer, SC-1F, to insert into a physically-blended D/A system to optimize the interface. We have found that SC-1F spontaneously segregates to the interface through favorable miscibility and heterogeneous nucleation with the acceptor.
View Article and Find Full Text PDFPlant Dis
September 2025
Institute of Plant Protection, University of Belgrade-Faculty of Agriculture, Department of Phytopathology, Nemanjina 6, Belgrade , Serbia, 11080.
The pathogenic soilborne and postharvest fungus , as newly reported pathogen in Serbia, caused significant disease symptoms on carrot roots and seedlings in inoculation assays. In October 2023, machine-washed and cold-stored carrot roots showed symptoms of black rot of patches and abundant sporulation. The influence of the postharvest treatment of machine washing was confirmed by additional sampling at the production site.
View Article and Find Full Text PDFCommun Chem
September 2025
Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Dresden, Germany.
Purely organic materials showing efficient and persistent emission via room temperature phosphorescence (RTP) allow the design of minimalistic yet powerful technological solutions for sensing, bioimaging, information storage, and safety applications using the photonic design principle of digital luminescence. Although several promising materials exist, a deep understanding of the underlying structure-property relationship and, thus, development of rational design strategies are widely missing. Some of the best purely organic emitters follow the donor-acceptor-donor design motif.
View Article and Find Full Text PDFVox Sang
September 2025
Vitalant Innovation Center, Denver, Colorado, USA.
Background And Objectives: The US Food and Drug Administration guidance for cold-stored platelets (CSPs) permits storage of apheresis platelets at 1-6°C for ≤14 days. During a pilot programme, CSPs were evaluated in a large US blood centre over a 10-month period (September 2023 to July 2024) to better understand the formation of aggregates under routine use.
Materials And Methods: Platelets collected in 100% plasma were moved into cold storage within 4 h of collection and shipped to local hospitals.