98%
921
2 minutes
20
The effective attachment of antibodies to the immune sensing interface is a crucial factor that determines the detection performance of immunosensors. Therefore, this study aims to investigate a novel antibody immobilization material with low molecular weight, high stability, and excellent directional immobilization effect. In this study, we employed molecular docking technology based on the ZDOCK algorithm to virtually screen DNA functional ligands (DNAFL) for the Fc segment of antibodies. Through a comprehensive analysis of the key binding sites and contact propensities at the interface between DNAFL and IgG antibody, we have gained valuable insights into the affinity relationship, as well as the principles governing amino acid and nucleotide interactions at this interface. Furthermore, molecular affinity experiments and competitive binding experiments were conducted to validate both the binding ability of DNAFL to IgG antibody and its actual binding site. Through affinity experiments using multi-base sequences, we identified bases that significantly influence antibody-DNAFL binding and successfully obtained DNAFL with an enhanced affinity towards the IgG Fc segment. These findings provide a theoretical foundation for the targeted design of higher-affinity DNAFLs while also presenting a new technical approach for immunosensor preparation with potential applications in biodetection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11354668 | PMC |
http://dx.doi.org/10.3390/ijms25168681 | DOI Listing |
Clin Epigenetics
September 2025
Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany.
Background: Work-related stress is a well-established contributor to mental health decline, particularly in the context of burnout, a state of prolonged exhaustion. Epigenetic clocks, which estimate biological age based on DNA methylation (DNAm) patterns, have been proposed as potential biomarkers of chronic stress and its impact on biological aging and health. However, their role in mediating the relationship between work-related stress, physiological stress markers, and burnout remains unclear.
View Article and Find Full Text PDFGenome Biol
September 2025
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.
View Article and Find Full Text PDFTheor Appl Genet
September 2025
Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands.
Potato bolters are caused by excision of a transposon from the StCDF1.3 allele, resulting in a somatic mutant with late maturity. Somatic mutations during vegetative propagation can lead to novel genotypes, known as sports.
View Article and Find Full Text PDFNat Aging
September 2025
Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
Beyond their classical functions as redox cofactors, recent fundamental and clinical research has expanded our understanding of the diverse roles of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) in signaling pathways, epigenetic regulation and energy homeostasis. Moreover, NAD and NADP influence numerous diseases as well as the processes of aging, and are emerging as targets for clinical intervention. Here, we summarize safety, bioavailability and efficacy data from NAD-related clinical trials, focusing on aging and neurodegenerative diseases.
View Article and Find Full Text PDFEMBO J
September 2025
Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences; Wuhan University, Wuhan, 430071, China.
Inadequate antigen presentation by MHC-I in tumor microenvironment (TME) is a common immune escape mechanism. Here, we show that glycine decarboxylase (GLDC), a key enzyme in glycine metabolism, functions as an inhibitor of MHC-I expression in EGFR-activated tumor cells to induce immune escape by a mechanism independent of its enzymatic activity. Upon EGFR activation, GLDC is phosphorylated by SRC and subsequently translocated to the nucleus in human NSCLC cells.
View Article and Find Full Text PDF