Insight into the Enforced Stability of the Solid Electrolyte Interphase on the Graphite Anode by Prelithiation.

J Phys Chem Lett

School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Laboratory of ETESPG (GHEI), South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Prelithiation in a graphite anode is widely considered as an effective strategy to compensate for the lithium loss due to the formation of the solid electrolyte interphase (SEI), thus improving the cycle life of lithium-ion batteries (LIBs). However, less attention has been paid to the difference of the SEI established by prelithiation from that resulting from the charging process. To address this issue, a prelithiated graphite anode is prepared by thermal contact and its performances are investigated by electrochemical measurements and spectral characterizations. It is found that the significantly improved initial coulombic efficiency (ICE) and cyclic stability of the graphite anode by prelitiation are attributed to the formation of LiF-rich SEI. Different from the charging process that favors decomposition of solvents and results in a SEI mainly consisting of organic and inorganic carbonates, prelithiation is beneficial for the reduction of LiPF and results in a LiF-rich SEI that presents high stability and robustness, enabling the graphite anode with significantly improved cyclic stability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c01891DOI Listing

Publication Analysis

Top Keywords

graphite anode
20
solid electrolyte
8
electrolyte interphase
8
charging process
8
cyclic stability
8
lif-rich sei
8
graphite
5
anode
5
sei
5
insight enforced
4

Similar Publications

Ether-based electrolytes are widely acknowledged for their potential to form stable solid electrolyte interfaces (SEIs) for stable anode performance. However, conventional ether-based electrolytes have shown a tendency for cation-solvent co-intercalation phenomena on graphite electrodes, resulting in lower capacity and higher voltage platforms compared to those of neat cation insertion in ester-based electrolytes. In response, we propose the development of weakly solvating ether solvents to weaken the interaction between cations and solvents, thereby suppressing co-intercalation behavior.

View Article and Find Full Text PDF

Hard carbon (HC) has emerged as a promising anode material for sodium-ion batteries (SIBs) owing to its superior sodium storage performance. However, the high cost of conventional HC precursors remains a critical challenge. To address this, coal─a low-cost, carbon-rich precursor─has been explored for HC synthesis.

View Article and Find Full Text PDF

A novel molecularly imprinted polymer (MIP)-based electrochemical sensor has been developed for the selective detection of naringenin (NAR) in various real-world samples, including plant extracts, wine, and herbal supplements. To enhance the active surface area and porosity of the glassy carbon electrode (GCE), a 2D/0D nanocomposite composed of graphene oxide (GO) and cobalt ferrite (CFO) nanoparticles, CFO_GO, was incorporated into the sensor design. 4-aminobenzoic acid (4-ABA) was selected as the functional monomer to prepare the MIPs.

View Article and Find Full Text PDF

Electrocatalytic synthesis of ammonia is a sustainable, cost-effective alternative method for producing renewable electricity and can operate under milder conditions than the traditional Haber-Bosch method. We report direct laser-induced synthesis of copper nanocatalysts embedded in graphitic films for the synthesis of ammonia. Laser-induced metal-embedded graphene (m-LIG) offers many advantages, such as fast and simple synthesis, shape design of the electrodes, and direct printing on any substrate, including thermally sensitive plastics.

View Article and Find Full Text PDF

Precise control of particle size, pore size distribution, and carbon layer spacing under green and low-energy conditions is critical for developing advanced carbon electrodes for supercapacitors and sodium-ion batteries (SIBs). Herein, we proposed a new strategy to prepare an MgAl bimetallic metal-organic framework (MOF) via a pre-ionization strategy, effectively avoiding harsh conditions and using organic solvents in hydrothermal synthesis. By fine-tuning the Mg/Al ratio and pyrolysis conditions, the particle size, pore size distribution and carbon layer spacing of rod porous carbon (RPC) were precisely adjusted.

View Article and Find Full Text PDF