Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The reliable operation of electrical power transmission systems is crucial for ensuring consumer's stable and uninterrupted electricity supply. Faults in electrical power transmission systems can lead to significant disruptions, economic losses, and potential safety hazards. A protective approach is essential for transmission lines to guard against faults caused by natural disturbances, short circuits, and open circuit issues. This study employs an advanced artificial neural network methodology for fault detection and classification, specifically distinguishing between single-phase fault and fault between all three phases and three-phase symmetrical fault. For fault data creation and analysis, we utilized a collection of line currents and voltages for different fault conditions, modelled in the MATLAB environment. Different fault scenarios with varied parameters are simulated to assess the applied method's detection ability. We analyzed the signal data time series analysis based on phase line current and phase line voltage. We employed SMOTE-based data oversampling to balance the dataset. Subsequently, we developed four advanced machine-learning models and one deep-learning model using signal data from line currents and voltage faults. We have proposed an optimized novel glassbox Explainable Boosting (EB) approach for fault detection. The proposed EB method incorporates the strengths of boosting and interpretable tree models. Simulation results affirm the high-efficiency scores of 99% in detecting and categorizing faults on transmission lines compared to traditional fault detection state-of-the-art methods. We conducted hyperparameter optimization and k-fold validations to enhance fault detection performance and validate our approach. We evaluated the computational complexity of fault detection models and augmented it with eXplainable Artificial Intelligence (XAI) analysis to illuminate the decision-making process of the proposed model for fault detection. Our proposed research presents a scalable and adaptable method for advancing smart grid technology, paving the way for more secure and efficient electrical power transmission systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355548PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0309459PLOS

Publication Analysis

Top Keywords

fault detection
28
electrical power
16
power transmission
16
fault
13
transmission systems
12
novel glassbox
8
explainable boosting
8
detection
8
transmission lines
8
fault fault
8

Similar Publications

This paper presents a novel multiscale signal processing framework for power quality disturbance (PQD) and cyber intrusion detection in smart grids, combining Non-Subsampled Contourlet Transform (NSCT), Split Augmented Lagrangian Shrinkage Algorithm (SALSA), and Morphological Component Analysis (MCA). A key innovation lies in an adaptive weighting mechanism within NSCT's directional sub bands, enabling dynamic energy redistribution and enhanced representation of both low-frequency anomalies (e.g.

View Article and Find Full Text PDF

Image monitoring is an important research problem that has wide applications in various fields, including manufacturing industries, satellite imaging, medical diagnostics, and so forth. Traditional image monitoring control charts perform rather poorly when the changes occur at very small regions of the image, and when the changes of image intensity values are small in those regions. Their performances get worse if the images contain noise, and the changes occur near the edges of image objects.

View Article and Find Full Text PDF

Breast cancer is highlighted in recent research as one of the most prevalent types of cancer. Timely identification is essential for enhancing patient results and decreasing fatality rates. Utilizing computer-assisted detection and diagnosis early on may greatly improve the chances of recovery by accurately predicting outcomes and developing suitable treatment plans.

View Article and Find Full Text PDF

In recent years, electric vehicles (EVs) have become increasingly popular, driven by advancements in battery technology, growing environmental awareness, and the demand for sustainable transportation. Compared to internal combustion engines, EVs not only produce fewer emissions but also offer greater energy efficiency, leading to reduced operating costs. Despite these advantages, concerns about battery failures have been a significant safety issue for EVs.

View Article and Find Full Text PDF

Misalignment is among the most frequent mechanical faults in rotating electrical machines, often resulting in partial or complete motor failure over time. To tackle this issue, the present study proposes an innovative methodology for diagnosing misalignment faults in rotating electrical machines. The method integrates the dual-tree complex wavelet transform with a refined composite multiscale fluctuation dispersion entropy algorithm (DTCWT-RCMFDE) for feature extraction, combined with the least-squares support vector machines algorithm (LSSVM) for fault classification.

View Article and Find Full Text PDF