Publications by authors named "Nagwan Abdel Samee"

Colorectal cancer (CRC) is a major global health concern, where timely and precise diagnosis is crucial for effective treatment. In medical imaging, accurate segmentation of pathological regions is essential for guiding diagnostic decisions and treatment strategies. However, traditional metaheuristic-based segmentation methods often face challenges like slow convergence, suboptimal threshold determination, and inadequate balancing between exploration and exploitation, which can limit their effectiveness in multi-threshold image segmentation (MTIS) of CRC pathology images.

View Article and Find Full Text PDF

The estimation of user or object location in an indoor environment is in high demand nowadays. Indoor Navigation Systems (INS) have utmost importance in large shopping malls, hospitals, universities, airports, etc. Many Indoor Positioning Systems (IPS) have been developed nowadays to enable several types of location-based services.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) is a life-threatening condition caused by bleeding in the brain, with high mortality rates, particularly in the acute phase. Accurate diagnosis through medical image segmentation plays a crucial role in early intervention and treatment. However, existing segmentation methods, such as region-growing, clustering, and deep learning, face significant limitations when applied to complex images like ICH, especially in multi-threshold image segmentation (MTIS).

View Article and Find Full Text PDF

BackgroundCervical cancer is the fourth most common cause of women cancer deaths worldwide. The primary etiology of cervical cancer is the persistent infection of specific high-risk strains of the human papillomavirus. Liquid-based cytology is the established method for early detection of cervical cancer.

View Article and Find Full Text PDF

In the rapidly advanced and evolving information technology industry, adequate client engagement plays a critical role as it is very important to understand the client's concerns, and requirements, have the records, authorizations, and go-ahead of previously agreed requirements, and provide the feasible solution accordingly. Previously multiple solutions have been proposed to enhance the efficiency of client engagement, but they lack traceability, trust, transparency, and conflict in agreements of previous contracts. Due to the lack of these shortcomings, the client requirement is getting delayed which is causing client escalations, integrity issues, project failure, and penalties.

View Article and Find Full Text PDF

Thyroid syndrome, a complex endocrine disorder, involves the dysregulation of the thyroid gland, impacting vital physiological functions. Common causes include autoimmune disorders, iodine deficiency, and genetic predispositions. The effects of thyroid syndrome extend beyond the thyroid itself, affecting metabolism, energy levels, and overall well-being.

View Article and Find Full Text PDF

Lung cancer is a critical health issue that demands swift and accurate diagnosis for effective treatment. In medical imaging, segmentation is crucial for identifying and isolating regions of interest, which is essential for precise diagnosis and treatment planning. Traditional metaheuristic-based segmentation methods often struggle with slow convergence speed, poor optimized thresholds results, balancing exploration and exploitation, leading to suboptimal performance in the multi-thresholding segmenting of lung cancer images.

View Article and Find Full Text PDF

Bladder cancer (BC) diagnosis presents a critical challenge in biomedical research, necessitating accurate tumor classification from diverse datasets for effective treatment planning. This paper introduces a novel wrapper feature selection (FS) method that leverages a hybrid optimization algorithm combining Orthogonal Learning (OL) with a rime optimization algorithm (RIME), termed mRIME. The mRIME algorithm is designed to avoid local optima, streamline the search process, and select the most relevant features without compromising classifier performance.

View Article and Find Full Text PDF

Bladder Cancer (BC) is a common disease that comes with a high risk of morbidity, death, and expense. Primary risk factors for BC include exposure to carcinogens in the workplace or the environment, particularly tobacco. There are several difficulties, such as the requirement for a qualified expert in BC classification.

View Article and Find Full Text PDF

The reliable operation of electrical power transmission systems is crucial for ensuring consumer's stable and uninterrupted electricity supply. Faults in electrical power transmission systems can lead to significant disruptions, economic losses, and potential safety hazards. A protective approach is essential for transmission lines to guard against faults caused by natural disturbances, short circuits, and open circuit issues.

View Article and Find Full Text PDF

The identification of tumors through gene analysis in microarray data is a pivotal area of research in artificial intelligence and bioinformatics. This task is challenging due to the large number of genes relative to the limited number of observations, making feature selection a critical step. This paper introduces a novel wrapper feature selection method that leverages a hybrid optimization algorithm combining a genetic operator with a Sinh Cosh Optimizer (SCHO), termed SCHO-GO.

View Article and Find Full Text PDF

This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender identification in the realm of identification. The study encompasses a corpus of CT images of cranial structures derived from 218 male and 203 female subjects, constituting a total cohort of 421 individuals within the age bracket of 25 to 65 years. Employing deep learning, a prominent subset of machine learning algorithms, the study deploys convolutional neural network (CNN) models to excavate profound attributes inherent in the skull CT images.

View Article and Find Full Text PDF

The aim of this study was to test the morphometric features affecting 20-m sprint performance in children at the first level of primary education using machine learning (ML) algorithms. In this study, 130 male and 152 female volunteers aged between 6 and 11 years were included. After obtaining demographic information of the participants, skinfold thickness, diameter and circumference measurements, and 20-m sprint performance were determined.

View Article and Find Full Text PDF
Article Synopsis
  • - The research presents a new dual-pathway convolutional neural network (DP-CNN) specifically designed for analyzing Log-Mel spectrogram images from multichannel electromyography signals, focusing on performance for both able-bodied and amputee subjects.
  • - The DP-CNN achieves high mean accuracies of 94.93% for healthy subjects in NinaPro DB1 and 85.36% for amputee subjects in DB3, showcasing its effectiveness across various datasets.
  • - Compared to previous methods, the DP-CNN shows significant performance improvements, with accuracy boosts of up to 39.09% and outperforms transfer learning models, suggesting strong potential for enhancing myoelectric control applications.
View Article and Find Full Text PDF

The analysis of body motion is a valuable tool in the assessment and diagnosis of gait impairments, particularly those related to neurological disorders. In this study, we propose a novel automated system leveraging artificial intelligence for efficiently analyzing gait impairment from video-recorded images. The proposed methodology encompasses three key aspects.

View Article and Find Full Text PDF

The increasing prevalence of mental disorders among youth worldwide is one of society's most pressing issues. The proposed methodology introduces an artificial intelligence-based approach for comprehending and analyzing the prevalence of neurological disorders. This work draws upon the analysis of the Cities Health Initiative dataset.

View Article and Find Full Text PDF

Introduction: Acute heart failure (AHF) is a serious medical problem that necessitates hospitalization and often results in death. Patients hospitalized in the emergency department (ED) should therefore receive an immediate diagnosis and treatment. Unfortunately, there is not yet a fast and accurate laboratory test for identifying AHF.

View Article and Find Full Text PDF

Plant diseases annually cause damage and loss of much of the crop, if not its complete destruction, and this constitutes a significant challenge for farm owners, governments, and consumers alike. Therefore, identifying and classifying diseases at an early stage is very important in order to sustain local and global food security. In this research, we designed a new method to identify plant diseases by combining transfer learning and Gravitational Search Algorithm (GSA).

View Article and Find Full Text PDF

Quality of life is greatly affected by chronic wounds. It requires more intensive care than acute wounds. Schedule follow-up appointments with their doctor to track healing.

View Article and Find Full Text PDF

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex and debilitating illness with a significant global prevalence, affecting over 65 million individuals. It affects various systems, including the immune, neurological, gastrointestinal, and circulatory systems. Studies have shown abnormalities in immune cell types, increased inflammatory cytokines, and brain abnormalities.

View Article and Find Full Text PDF

The Internet of Things (IoT) is capable of controlling the healthcare monitoring system for remote-based patients. Epilepsy, a chronic brain syndrome characterized by recurrent, unpredictable attacks, affects individuals of all ages. IoT-based seizure monitoring can greatly enhance seizure patients' quality of life.

View Article and Find Full Text PDF

The rising risk of diabetes, particularly in emerging countries, highlights the importance of early detection. Manual prediction can be a challenging task, leading to the need for automatic approaches. The major challenge with biomedical datasets is data scarcity.

View Article and Find Full Text PDF

The development of novel medicines to treat autoimmune diseases and SARS-CoV-2 main protease (Mpro), a virus that can cause both acute and chronic illnesses, is an ongoing necessity for the global community. The primary objective of this research is to use CoMFA methods to evaluate the quantitative structure-activity relationship (QSAR) of a select group of chemicals concerning autoimmune illnesses. By performing a molecular docking analysis, we may verify previously observed tendencies and gain insight into how receptors and ligands interact.

View Article and Find Full Text PDF

Background: The examination, counting, and classification of white blood cells (WBCs), also known as leukocytes, are essential processes in the diagnosis of many disorders, including leukemia, a kind of blood cancer characterized by the uncontrolled proliferation of carcinogenic leukocytes in the marrow of the bone. Blood smears can be chemically or microscopically studied to better understand hematological diseases and blood disorders. Detecting, identifying, and categorizing the many blood cell types are essential for disease diagnosis and therapy planning.

View Article and Find Full Text PDF