98%
921
2 minutes
20
Iron is an essential metal ion implicated in several cellular processes. However, the reactive nature of iron renders this metal ion potentially dangerous for cells, and its levels need to be tightly controlled. Alterations in the intracellular concentration of iron are associated with different neuropathological conditions, including neurodegeneration with brain iron accumulation (NBIA). As the name suggests, NBIA encompasses a class of rare and still poorly investigated neurodegenerative disorders characterized by an abnormal accumulation of iron in the brain. NBIA is mostly a genetic pathology, and to date, 10 genes have been linked to familial forms of NBIA. In the present review, after the description of the principal mechanisms implicated in iron homeostasis, we summarize the research data concerning the pathological mechanisms underlying the genetic forms of NBIA and discuss the potential involvement of iron in such processes. The picture that emerges is that, while iron overload can contribute to the pathogenesis of NBIA, it does not seem to be the causal factor in most forms of the pathology. The onset of these pathologies is rather caused by a combination of processes involving the interplay between lipid metabolism, mitochondrial functions, and autophagic activity, eventually leading to iron dyshomeostasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352641 | PMC |
http://dx.doi.org/10.3390/cells13161376 | DOI Listing |
Haematologica
September 2025
Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders and European Reference Network Center for Rare Hematological Diseases "EuroBloodNet".
Not available.
View Article and Find Full Text PDFAnal Methods
September 2025
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China.
A novel magnetic nanostructured molecularly imprinted polymer probe (FeO@MIP) was developed for the continuous detection of Ti/Fe. The synthesis employed 50 nm FeO nanoparticles as the core matrix, with Ti and Fe serving as template molecules. Functional monomers α-methylacrylic acid (MAA) and acrylamide (AM) were used, along with ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent and 2,2'-azobisisobutyronitrile (AIBN) as the polymerization initiator, utilizing a microwave-assisted procedure.
View Article and Find Full Text PDFChembiochem
September 2025
School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.
The ATPase caseinolytic protease X (ClpX), forming the ClpXP complex with caseinolytic protease P (ClpP), is essential for mitochondrial protein homeostasis. While ClpP targeting is a recognized anticancer strategy, the role of ClpX in cancer remains underexplored. In pancreatic ductal adenocarcinoma (PDAC), elevated CLPX expression correlates with poor prognosis, suggesting its oncogenic function.
View Article and Find Full Text PDFOrg Lett
September 2025
Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
Presented herein is a protocol for the iron-catalyzed [4 + 1] cycloadditions of -Boc-imines with β-ketosulfoxonum ylides through a succession of nucleophilic additions and intramolecular annulation, giving access to functionalized oxazolidine-2-ones in generally good yields. In contrast to the renown Corey-Chaykovsky reaction via N attack to furnish aziridines, this method afforded oxazolidine-2-ones via an O-nucleophilic attack. Features of this strategy include readily accessible starting materials, sustainable catalyst, post-functionalizations of complex molecules, scalability, and exceptional control over diastereoselectivity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, LIFM, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, China.
Oximes serve as indispensable intermediates in synthetic chemistry, owing to their distinctive C═N─OH structure, conferring highly versatile reactivity. Synthesis of oxime via the electrochemical method has potential advantages, accompanied by the upgrading of industrialization. Herein, we propose a novel strategy by introducing nickel (Ni) mediation to obtain high-spin iron (Fe)(III) in phthalocyanine structure for synthesizing glyoxylate oxime via electrocatalytic nitric oxide (NO) coupling with keto acid.
View Article and Find Full Text PDF