Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

N-Nitrosamine disinfection by-products (NAs-DBPs) have been well proven for its role in esophageal carcinogenesis. However, the role of intratumoral microorganisms in esophageal squamous cell carcinoma (ESCC) has not yet been well explored in the context of exposure to NAs-DBPs. Here, the multi-omics integration reveals () as "facilitators" is highly enriched in cancer tissues and promotes the epithelial mesenchymal transition (EMT)-like subtype formation of ESCC. We demonstrate that potently drives de novo synthesis of fatty acids, migration, invasion and EMT phenotype through its unique FadAL adhesin. However, N-nitrosomethylbenzylamine upregulates the transcription level of FadAL. Mechanistically, co-immunoprecipitation coupled to mass spectrometry shows that FadAL interacts with FLOT1. Furthermore, FLOT1 activates PI3K-AKT/FASN signaling pathway, leading to triglyceride and palmitic acid (PA) accumulation. Innovatively, the results from the acyl-biotin exchange demonstrate that FadAL-mediated PA accumulation enhances Wnt3A palmitoylation on a conserved cysteine residue, Cys-77, and promotes Wnt3A membrane localization and the translocation of β-catenin into the nucleus, further activating Wnt3A/β-catenin axis and inducing EMT phenotype. We therefore propose a "microbiota-cancer cell subpopulation" interaction model in the highly heterogeneous tumor microenvironment. This study unveils a mechanism by which can drive ESCC and identifies FadAL as a potential diagnostic and therapeutic target for ESCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364064PMC
http://dx.doi.org/10.1080/19490976.2024.2391521DOI Listing

Publication Analysis

Top Keywords

wnt3a palmitoylation
8
emt phenotype
8
escc
5
synergism fusobacterium
4
fusobacterium periodonticum
4
periodonticum n-nitrosamines
4
n-nitrosamines promote
4
promote formation
4
formation emt
4
emt subtypes
4

Similar Publications

N-Nitrosamine disinfection by-products (NAs-DBPs) have been well proven for its role in esophageal carcinogenesis. However, the role of intratumoral microorganisms in esophageal squamous cell carcinoma (ESCC) has not yet been well explored in the context of exposure to NAs-DBPs. Here, the multi-omics integration reveals () as "facilitators" is highly enriched in cancer tissues and promotes the epithelial mesenchymal transition (EMT)-like subtype formation of ESCC.

View Article and Find Full Text PDF

Acyl-CoA synthetase long chain family member 5 (ACSL5), is a member of the acyl-CoA synthetases (ACSs) family that activates long chain fatty acids by catalyzing the synthesis of fatty acyl-CoAs. The dysregulation of ACSL5 has been reported in some cancers, such as glioma and colon cancers. However, little is known about the role of ACSL5 in acute myeloid leukemia (AML).

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) or metabolic-associated fatty liver disease has been characterized by the lipid accumulation with injury of hepatocytes and has become one of the most common chronic liver diseases in the world. The complex mechanisms of NAFLD formation are still under identification. Carnitine palmitoyltransferase-II (CPT-II) on inner mitochondrial membrane (IMM) regulates long chain fatty acid β-oxidation, and its abnormality has had more and more attention paid to it by basic and clinical research in NAFLD.

View Article and Find Full Text PDF

Wnt signalling is essential for regulation of embryonic development and adult tissue homeostasis, and aberrant Wnt signalling is frequently associated with cancers. Wnt signalling requires palmitoleoylation on a hairpin 2 motif by the endoplasmic reticulum-resident membrane-bound O-acyltransferase Porcupine (PORCN). This modification is indispensable for Wnt binding to its receptor Frizzled, which triggers signalling.

View Article and Find Full Text PDF

Selective Surface and Intraluminal Localization of Wnt Ligands on Small Extracellular Vesicles Released by HT-22 Hippocampal Neurons.

Front Cell Dev Biol

October 2021

Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.

The Wnt signaling pathway induces various responses underlying the development and maturation of the nervous system. Wnt ligands are highly hydrophobic proteins that limit their diffusion through an aqueous extracellular medium to a target cell. Nevertheless, their attachment to small extracellular vesicles-like exosomes is one of the described mechanisms that allow their transport under this condition.

View Article and Find Full Text PDF