Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Using a "core-first" approach with atom transfer radical polymerization, fluorescent center-functional star polymers of equivalent molecular weight but with varying numbers of arms (di-, tri-, and tetra-arm) were prepared. The sensitivity of fluorescence, combined with a dye-labeling technique introducing a fluorescent donor (carbazole) and an acceptor (anthracene) at the center of poly(methyl methacrylate) (PMMA) chains, enabled the application of time-resolved fluorescence resonance energy transfer to obtain quantitative insights into the conformation of the star polymer chains in the film state. When the results of star-branched polymers were compared with those of linear polymers of identical type and molecular weight, the impact of branching on polymer behavior was isolated for examination. Although the star topology does not alter the average intercoil distance, it affects the distance dispersity. Star polymers with higher arm numbers display decreased dispersity from distance due to reduced intermolecular aggregation at their geometric centers. This study presents the first spectroscopic evidence regarding the distribution of geometric centers in star polymers, offering a physical understanding of chain interpenetration and entanglement within star polymers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c02411 | DOI Listing |