A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Controllable Synthesis of Chain Center Dye-Labeled Star Polymers for Quantitative Examination of Interchain Conformation by Time-Resolved Fluorescence Resonance Energy Transfer. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Using a "core-first" approach with atom transfer radical polymerization, fluorescent center-functional star polymers of equivalent molecular weight but with varying numbers of arms (di-, tri-, and tetra-arm) were prepared. The sensitivity of fluorescence, combined with a dye-labeling technique introducing a fluorescent donor (carbazole) and an acceptor (anthracene) at the center of poly(methyl methacrylate) (PMMA) chains, enabled the application of time-resolved fluorescence resonance energy transfer to obtain quantitative insights into the conformation of the star polymer chains in the film state. When the results of star-branched polymers were compared with those of linear polymers of identical type and molecular weight, the impact of branching on polymer behavior was isolated for examination. Although the star topology does not alter the average intercoil distance, it affects the distance dispersity. Star polymers with higher arm numbers display decreased dispersity from distance due to reduced intermolecular aggregation at their geometric centers. This study presents the first spectroscopic evidence regarding the distribution of geometric centers in star polymers, offering a physical understanding of chain interpenetration and entanglement within star polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c02411DOI Listing

Publication Analysis

Top Keywords

star polymers
20
time-resolved fluorescence
8
fluorescence resonance
8
resonance energy
8
energy transfer
8
molecular weight
8
geometric centers
8
star
7
polymers
7
controllable synthesis
4

Similar Publications