Real-time detection and resection of sentinel lymph node metastasis in breast cancer through a rare earth nanoprobe based NIR-IIb fluorescence imaging.

Mater Today Bio

Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuro-imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, People's Republic of China.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sentinel lymph node (SLN) biopsy is a commonly employed procedure for the routine assessment of axillary involvement in patients with breast cancer. Nevertheless, conventional SLN mapping cannot reliably distinguish the presence and absence of metastatic disease. Additionally, the complex anatomical structures and lymphatic drainage patterns surrounding tumor sites pose challenges to the sensitivity of the near-infrared fluorescence imaging with subcutaneously injected probes. To identifying the SLN metastases, we developed a novel nanoprobe for fluorescence imaging within the second near-infrared (NIR-II) range. This nanoprobe utilizes rare-earth nanoparticles (RENPs) to emit bright fluorescence at 1525 nm and is conjugated with tumor-targeted hyaluronic acid (HA) to facilitate the detection of metastatic SLN. Upon intravenous administration, RENPs@HA effectively migrated to SLNs and selectively entered metastatic breast tumor cells through CD44-mediated endocytosis. The RENPs@HA nanoprobes exhibited rapid accumulation in metastatic inguinal lymph nodes in mouse model, displaying a 5.8-fold-stronger fluorescence intensity to that observed in normal SLNs. Consequently, these nanoprobes effectively differentiate metastatic SLNs from normal SLNs. Importantly, the probes accurately detected micrometastases. These findings underscore the potential of RENPs@HA for real-time visualization and screening of SLNs metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345890PMC
http://dx.doi.org/10.1016/j.mtbio.2024.101166DOI Listing

Publication Analysis

Top Keywords

fluorescence imaging
12
sentinel lymph
8
lymph node
8
breast cancer
8
normal slns
8
fluorescence
5
metastatic
5
slns
5
real-time detection
4
detection resection
4

Similar Publications

This review is intended as a guideline for beginners in confocal laser scanning microscopy. It combines basic theoretical concepts, such as fluorescence principles, resolution limits, and imaging parameters with practical guidance on sample preparation, staining strategies, and data acquisition using confocal microscopy. The aim is to combine technical and methodological aspects in order to provide a comprehensive and accessible introduction.

View Article and Find Full Text PDF

Recalcitrant Peripapillary Pachychoroid Syndrome Responds to High-Dose Aflibercept Therapy.

Retin Cases Brief Rep

September 2025

Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California of Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, California, United States.

Purpose: To describe a case of recalcitrant bilateral peripapillary pachychoroid syndrome (PPS) treated with high-dose (HD) intravitreal aflibercept injections.

Methods: Medical and imaging records were retrospectively evaluated. Multimodal imaging included ultra-widefield indocyanine green and fluorescein angiography and fundus autofluorescence.

View Article and Find Full Text PDF

Significance: Melanoma's rising incidence demands automatable high-throughput approaches for early detection such as total body scanners, integrated with computer-aided diagnosis. High-quality input data is necessary to improve diagnostic accuracy and reliability.

Aim: This work aims to develop a high-resolution optical skin imaging module and the software for acquiring and processing raw image data into high-resolution dermoscopic images using a focus stacking approach.

View Article and Find Full Text PDF

Intravascular optical coherence tomography (OCT) has represented a revolutionary invasive imaging method, offering high-resolution cross-sectional views of human coronary arteries, thereby promoting a significant evolution in the understanding of vascular biology in both acute and chronic coronary pathologies. Since the development of OCT in the early 1990s, this technique has provided detailed insights into vascular biology, enabling a more thorough assessment of coronary artery disease (CAD) and the impact of percutaneous coronary intervention (PCI). Moreover, a series of recent clinical trials has consistently demonstrated the clinical benefits of intravascular imaging (IVI) and OCT-guided PCI, showing improved outcomes compared to angiography-guided procedures, particularly in cases of complex coronary pathology.

View Article and Find Full Text PDF

Advancements and perspectives on organelle-targeted fluorescent probes for super-resolution SIM imaging.

Chem Sci

September 2025

Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China

As a cutting-edge super-resolution imaging technique, structured illumination microscopy (SIM) has been widely used in cell biology research, especially in the analysis of subcellular organelles and monitoring of their dynamic processes. Through multiple illumination and reconstruction processes, SIM breaks through the resolution limitations of traditional microscopes and can observe the fine structures within cells in real time with nanoscale resolution. This provides strong technical support for in-depth analyses of molecular mechanisms, organelle functions, signaling networks, and metabolic regulatory pathways within cells.

View Article and Find Full Text PDF