98%
921
2 minutes
20
The application of two-photon excitation (TPE) in the study of light-responsive materials holds immense potential due to its deeper penetration and reduced photodamage. Despite these benefits, TPE has been underutilised in the investigation of the photoinduced spin crossover (SCO) phenomenon. Here, we employ TPE to delve into the out-of-equilibrium dynamics of a SCO Fe dimer of the form [Fe(HL)](BF)·2MeCN (HL = 3,5-bis{6-(2,2'-bipyridyl)}pyrazole). Optical transient absorption (OTA) spectroscopy in solution proves that the same dynamics take place under both one-photon excitation (OPE) and TPE. The results show the emergence of the photoinduced high spin state in less than 2 ps and with a lifetime of 147 ns. Time-resolved photocrystallography (TRXRD) reveals a single molecular reorganisation within the first 500 ps following TPE. Additionally, variable temperature single crystal X-ray diffraction (VTSCXRD) and magnetic susceptibility measurements confirm that the thermal transition is silenced by the solvent. While the results of the OTA and TRXRD utilising TPE are intriguing, the high pump fluencies required to excite enough metal centres to the high spin state may impair its practical application. Nonetheless, this study sheds light on the potential of TPE for the investigation of the out-of-equilibrium dynamics of SCO complexes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339940 | PMC |
http://dx.doi.org/10.1039/d4sc02933j | DOI Listing |
Phys Rev Lett
August 2025
Purdue University, Department of Physics and Astronomy, West Lafayette, Indiana 47907, USA.
We experimentally and numerically study the collapse dynamics of a quantum vortex in a two-dimensional atomic superfluid following a fast interaction ramp from repulsion to attraction. We find the conditions and timescales for a superfluid vortex to radially converge into a quasistationary density profile, demonstrating the spontaneous formation of a vortex solitonlike structure in an atomic Bose gas. We record an emergent self-similar dynamics caused by an azimuthal modulational instability, which amplifies initial density perturbations and leads to the eventual splitting of a solitonic ring profile or direct fragmentation of a superfluid into disordered, but roughly circular arrays of Townes solitonlike wave packets.
View Article and Find Full Text PDFChem Sci
September 2025
Institut für Organische Chemie, Universitat Würzburg 97074 Würzburg Germany
The reversible covalent bond formation that underpins dynamic covalent chemistry (DCC) enables the construction of stimuli-responsive systems and the efficient assembly of complex architectures. While most DCC studies have focused on systems at thermodynamic equilibrium, there is growing interest in systems that operate away from equilibrium-either by shifting to a new free-energy landscape in response to a stimulus, or by accessing an out-of-equilibrium state following an energy input. Imine-based systems are especially attractive due to the accessibility of their building blocks and their dynamic behavior in both condensation and transimination reactions.
View Article and Find Full Text PDFPNAS Nexus
September 2025
Laboratoire Charles Coulomb (L2C), Université de Montpellier and CNRS (UMR 5221), Montpellier 34095, France.
Active-matter systems are inherently out-of-equilibrium and perform mechanical work by utilizing their internal energy sources. Breakdown of time-reversal symmetry (BTRS) is a hallmark of such dissipative nonequilibrium dynamics. We introduce a robust, experimentally accessible, noninvasive, quantitative measure of BTRS in terms of the Kullback-Leibler divergence in collision events, demonstrated in our novel artificial active matter, comprised of battery-powered spherical rolling robots whose energetics in different modes of motion can be measured with high precision.
View Article and Find Full Text PDFPhys Biol
September 2025
CNR-Istituto dei Sistemi Complessi, Via dei Taurini 19, I-00185 Rome, Italy.
Understanding the link between structure and function in proteins is fundamental in molecular biology and proteomics. A central question in this context is whether allostery-where the binding of a molecule at one site affects the activity of a distant site-emerges as a further manifestation of the intricate interplay between structure, function, and intrinsic dynamics. This study explores how allosteric regulation is modified when intrinsic protein dynamics operates under out-of-equilibrium conditions.
View Article and Find Full Text PDFNat Commun
August 2025
European XFEL, Schenefeld, Germany.
A fundamental understanding of the interplay between lattice structure, polarization and electrons is pivotal to the optical control of ferroelectrics. The interaction between light and matter enables the remote and wireless control of the ferroelectric polarization on the picosecond timescale, while inducing strain, i.e.
View Article and Find Full Text PDF