98%
921
2 minutes
20
Stable organic radicals generated by photo-excitation hold applications in molecular switching devices and information storage. It remains challenging to develop photo-generated radical materials with rapid response and air stability in the solid state. Here, we report a structure based on 1,3,6,8-tetraphenylpyrene derivative (Py-TTAc) displaying photo-induced radicals with air stability in the solid state. Photo-induced electron transfer, exposed to a 365 nm ultraviolet lamp for 1 minute, affords radicals in Py-TTAc powder as confirmed by electron paramagnetic resonance (EPR) spectroscopy. The maximum radical concentration reaches 2.21 % after continuous irradiation for 1 hour and recurs more than 10 times without any chemical degradation. The mechanistic study according to the femtosecond transient absorption (fsTA) and X-ray technology suggests that the radicals are derived from photo-induced symmetry-breaking charge separation (SB-CS) and stabilized through non-covalent interactions. The photo-generated stable radical system is employed in anti-counterfeiting paper and optoelectronic device applications. This study will provide insights into the development of photoactive organic radical materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202414374 | DOI Listing |
J Cancer Res Clin Oncol
September 2025
Department of Urology, University Hospital Tübingen, Eberhard Karls University, Hoppe-Seyler Str. 3, 72076, Tübingen, Germany.
Introduction And Objectives: High socioeconomic status (SES) is associated with improved oncological outcomes across various cancer types, including prostate cancer. However, limited evidence exists regarding the impact of SES and lifestyle factors on patient-reported outcomes (PROs), including quality of life (QoL), health status (HS), and functional recovery following radical prostatectomy (RP).
Materials And Methods: We conducted a retrospective single-center analysis of 327 patients undergoing RP (177 open, 150 robotic-assisted) assessing pre- and postoperative functional outcomes (QoL, HS, erectile function, continence).
Khirurgiia (Mosk)
September 2025
Dagestan State Medical University, Makhachkala, Russia.
Objective: To analyze the effectiveness of minimally invasive surgery for small and medium sized liver cysts.
Material And Methods: We used minimally invasive technologies in 331 patients with echinococcal liver cysts (small cysts (<3.5 cm) - 49 (14.
J Am Chem Soc
September 2025
State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
The discovery of new weak supramolecular interactions and supramolecular synthons is essential for directing self-assembly processes with enhanced precision, diversity, and functionality in complex molecular architectures. Here, we report the controlled self-assembly of diverse supramolecular architectures by a new directional bonding approach through the integration of radical-based dynamic covalent chemistry and supramolecular synthons. A novel macrocyclic synthon, , with a linear direction is constructed via radical-based dynamic covalent bonds from the phenothiazine building block substituted with two dicyanomethyl radicals.
View Article and Find Full Text PDFInt J Phytoremediation
September 2025
Innovative Food Technologies Development Application and Research Center, Gölköy Campus Bolu, Bioenvironment and Green Synthesis Research Group, Bolu Abant İzzet Baysal University, Bolu, Türkiye.
This study presents an eco-friendly approach for the green synthesis of manganese oxide nanoparticles (MnONPs) using () (einkorn wheat) seed extract as a reducing and stabilizing agent. The synthesized MnONPs were characterized by UV-Vis, XRD, FTIR, SEM-EDX, BET, and zeta potential analyses, which confirmed their crystalline nature, spherical morphology, and mesoporous structure with a surface area of 41.50 m/g.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
Developing cost-effective spinel oxide catalysts with both high oxygen evolution reaction (OER) activity and stability is crucial for advancing sustainable clean energy conversion. However, practical applications are often hindered by the activity limitations inherent in the adsorbate evolution mechanism (AEM) and the stability limitations associated with the lattice oxygen mechanism (LOM). Herein, we demonstrate structural changes induced by phase transformation in CoMn spinel oxides, which yield more active octahedral sites with shortened intersite distance.
View Article and Find Full Text PDF