Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Growing concern over microplastic pollution, driven by their widespread accumulation in the environment, stresses the need for comprehensive assessments. This study investigates the spatial and temporal distribution of microplastics in the Ikopa River (Antananarivo - Madagascar), which flows through a densely populated area, and examines their correlation with contamination levels in local fish species. By analyzing upstream and downstream stations across wet and dry seasons, only a notable increase in microplastic concentration downstream during the wet season was observed, ranging from 138.6 ± 9.0 to 222.0 ± 24.5 particles m, with polyethylene-co-vinyl acetate being the predominant polymer at 62.3 ± 5.13% of the total sampled polymers. This distribution underlines the impact of urban activities on pollution levels. Fish species, gambusia and Nile tilapia, were assessed for microplastic occurrence in gills and gastrointestinal tracts. Higher contamination rates were found in gambusia, enlightening the influence of feeding behaviour and fish habitat on microplastics contamination. Ingestion of microplastics directly from the water column was evident in both species, with the detection of high-density plastics such as polytetrafluoroethylene and polyvinyl chloride suggesting likely sediment contamination. This research highlights the widespread contamination of aquatic environments and its direct impact on local wildlife, pointing to a clear requirement for effective pollution management strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-024-13010-5DOI Listing

Publication Analysis

Top Keywords

microplastic pollution
8
ikopa river
8
fish species
8
contamination
5
unseen riverine
4
riverine risk
4
risk spatio-temporal
4
spatio-temporal shifts
4
microplastic
4
shifts microplastic
4

Similar Publications

The coexistence of antibiotics (AB) and microplastics (MP) in the environment has led to the formation of AB-MP complexes, posing several ecological and public health challenges. This review explores the mechanisms driving AB adsorption onto MPs, including diverse interactions (hydrophobic interactions, hydrogen bonding, π-π stacking, and ionic exchange) and their role in maintaining the persistence and mobility of the complexes. These complexes have been reported to serve as reservoirs/vectors for antimicrobial resistance (AMR), disrupt microbial communities, and enhance the bioavailability of ABs, thus posing various threats affecting biodiversity health and ecosystem stability.

View Article and Find Full Text PDF

Adsorption behavior and neurotoxic synergy of thallium and polystyrene microplastics in Caenorhabditis elegans.

Aquat Toxicol

September 2025

State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China. Electronic address:

Microplastics (MPs) have emerged as ubiquitous environmental contaminants, while thallium (Tl), a highly toxic metalloid, is gaining attention as a novel pollutant due to its increasing release from electronic waste and mining activities. These pollutants frequently coexist in aquatic environments; however, their combined effects at environmentally relevant concentrations remain poorly understood. In this study, the adsorption behavior and joint neurotoxicity of polystyrene (PS) microplastics and Tl were systematically evaluated using Caenorhabditis elegans as a model organism.

View Article and Find Full Text PDF

Trophic-level accumulation and transfer of legacy and emerging contaminants in marine biota: meta-analysis of mercury, PCBs, microplastics, PFAS, PAHs.

Mar Pollut Bull

September 2025

Florida International University, Civil and Environmental Engineering, 10555 West Flagler Street, Engineering Center, Miami, Florida 33174, USA. Electronic address:

Marine ecosystems are increasingly threatened by anthropogenic pollutants, including plastics, persistent organic pollutants, heavy metals, oil, and emerging contaminants. This meta-analysis examined the accumulation patterns of five major contaminants-mercury (Hg), polychlorinated biphenyls (PCBs), microplastics, per- and polyfluoroalkyl substances (PFAS), and polycyclic aromatic hydrocarbons (PAHs)-in relation to trophic level and lifespan across marine species. Data synthesis revealed distinct differences in bioaccumulation and biomagnification between legacy and emerging contaminants.

View Article and Find Full Text PDF

Microplastics in coastal waters of Northern Cyprus: Environmental burden and seafood contamination.

Mar Pollut Bull

September 2025

Faculty of Fisheries, Mersin University, Yenisehir Campus, Mersin, 33160, Turkey; Mersin University, Marine Life Museum Yenisehir Campus, Mersin, 33160, Turkey.

In this study, surface water, sediment, and fish samples were collected from five regions along the northern coasts of Cyprus during both summer and winter seasons to assess their microplastic contamination levels. In surface waters, the highest microplastic concentrations per square meter were recorded in the following order: Karpaz (North) (0.16 MP/m), Güzelyurt (0.

View Article and Find Full Text PDF

Hepatotoxicity induced by polylactic acid microplastics: The mediating role of gut microbiota and uric acid metabolism.

J Adv Res

September 2025

National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China. Electronic address: huangzhenlie85825

Introduction: The increasing use of biodegradable plastics has led to the inevitable human consumption of biodegradable microplastics (MPs). These MPs can be degraded and absorbed into various organs and tissues via the gastrointestinal tract, with the liver being the primary target for digestion and absorption.

Objectives: This study aimed to investigate the toxic effects and mechanisms of biodegradable MPs on the liver following gastrointestinal degradation.

View Article and Find Full Text PDF