The intestinal microbiome of infants with cow's milk-induced FPIES is enriched in taxa and genes of enterobacteria.

J Pediatr Gastroenterol Nutr

MicroHealth Group, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC)/Instituto Biosanitario del Principado de Asturias (ISPA), Villaviciosa, Asturias, Spain.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: Food protein-induced enterocolitis syndrome (FPIES) is a severe type of non-IgE (immunoglobulin E)-mediated (NIM) food allergy, with cow's milk (CM) being the most common offending food. The relationship between the gut microbiota and its metabolites with the inflammatory process in infants with CM FPIES is unknown, although evidence suggests a microbial dysbiosis in NIM patients. This study was performed to contribute to the knowledge of the interaction between the gut microbiota and its derived metabolites with the local immune system in feces of infants with CM FPIES at diagnosis.

Methods: Twelve infants with CM FPIES and a matched healthy control group were recruited and the gut microbiota was investigated by 16S amplicon and shotgun sequencing. Fatty acids (FAs) were measured by gas chromatography, while immune factors were determined by enzyme-linked immunosorbent assay and Luminex technology.

Results: A specific pattern of microbiota in the gut of CM FPIES patients was found, characterized by a high abundance of enterobacteria. Also, an intense excretion of FAs in the feces of these infants was observed. Furthermore, correlations were found between fecal bifidobacteria and immune factors.

Conclusion: These fecal determinations may be useful to gain insight into the pathophysiology of this syndrome and should be taken in consideration for future studies of FPIES patients.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jpn3.12356DOI Listing

Publication Analysis

Top Keywords

gut microbiota
12
infants fpies
12
feces infants
8
fpies patients
8
fpies
7
infants
5
intestinal microbiome
4
microbiome infants
4
infants cow's
4
cow's milk-induced
4

Similar Publications

Pomegranate (Punica granatum L) is a rich source of bioactive compounds, including punicalagin, ellagic acid, anthocyanins, and urolithins, which contribute to its broad pharmacological potential. This review summarizes evidence from in vitro and in vivo experiments, as well as clinical studies, highlighting pomegranate's therapeutic effects in inflammation, metabolic disorders, cancer, cardiovascular disease, neurodegeneration, microbial infections, and skin conditions. Mechanistic insights show modulation of pathways such as nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), alpha serine/threonine-protein kinase (AKT1), and nuclear factor erythroid 2-related factor 2 (Nrf2).

View Article and Find Full Text PDF

Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.

View Article and Find Full Text PDF

Amphetamines are psychostimulants that are commonly used to treat neuropsychiatric disorders and are prone to misuse. The pathogenesis of amphetamine use disorder (AUD) is associated with dysbiosis (an imbalance in the body's microbiome) and bacterially produced short-chain fatty acids (SCFAs), which are implicated in the gut-brain axis. Amphetamine exposure in both rats and humans increases the amount of intestinal , which releases SFCAs.

View Article and Find Full Text PDF

American black bear (Ursus americanus) as a potential host for Campylobacter jejuni.

PLoS One

September 2025

School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America.

The Gram-negative bacterium Campylobacter jejuni is part of the commensal gut microbiota of numerous animal species and a leading cause of bacterial foodborne illness in humans. Most complete genomes of C. jejuni are from strains isolated from human clinical, poultry, and ruminant samples.

View Article and Find Full Text PDF