Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Two-dimensional metal-organic frameworks (2D MOFs) hold great promise as electrochemically active materials. However, their application in MOF nanocomposite electrodes in solution engineering is limited by structural self-stacking and imperfect conductive pathways. In this study, we used meso-tetra(4-carboxyphenyl) porphine (TCPP) with off-domain π-bonds to reconstitute Zn-TCPP (ZMOF) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) through an interfacial modulation strategy involving electrostatic coupling and hydrogen bonding, creating a conductive composite with a nanosheet structure. The negatively charged PSS and ZMOF formed a three-dimensional interconnected conductive network with excellent interfaces. The positively charged PEDOT, fine tuned with the lamellar structure, established strong π-π stacking interactions between the porphyrin and thiophene rings. ZMOF also induced changes in the PEDOT chain structure, weakening PSS entanglement and enhancing charge-transport properties. The specific capacitance of the prepared supercapacitor was as high as 967.8 F g. Flexible supercapacitors produced on a large scale using dispensing printing technology exhibited an energy density of 1.85 μWh cm and a power density of 7.08 μW cm. This interfacial modulation strategy also exhibited excellent wearable properties, with 96 % capacitance retention at a 180° bending angle and stable cycling performance. This study presented a significant advancement in the functionalization of 2D materials, highlighting their potential for device-grade capacitive architectures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.08.123DOI Listing

Publication Analysis

Top Keywords

interfacial modulation
12
modulation strategy
12
two-dimensional metal-organic
8
solution engineering
8
strategy poly34-ethylenedioxythiophene-poly4-styrenesulfonate
4
poly34-ethylenedioxythiophene-poly4-styrenesulfonate pedotpss
4
pedotpss ultrathin
4
ultrathin two-dimensional
4
metal-organic framework
4
framework nanosheets
4

Similar Publications

Influence of the Metal Support─Catalyst Contact on the Performance of NiO-Based O Evolution Electrocatalysts.

ACS Appl Mater Interfaces

September 2025

Surface Science Laboratory, Department of Materials and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.

The performance of NiO-based electrocatalysts for the oxygen evolution reaction (OER) is strongly influenced by the interface between the metal support (current collector) and the catalyst layer, which modulates electronic properties and electrochemical activity. This study systematically investigates the solid-solid interface behavior of NiO thin films prepared by reactive magnetron sputtering on Pt, Au, and Ni, followed by electrochemical characterization. Stepwise NiO deposition and X-ray photoelectron spectroscopy reveal distinct band alignment and electronic structure differences at the metal-catalyst interface.

View Article and Find Full Text PDF

Hexaazaisowurtzitane (CL-20) is a high-energy-density compound with poor thermal stability, which hinders its application in composite energetic systems. A bi-interface structure of polydopamine-coated graphene oxide (GO@PDA) is shown to markedly improve thermal stability compared with pristine CL-20 and single-layer coatings. Reactive molecular dynamics simulations enhanced by a neural network potential (NNP) reveal that the delayed onset of decomposition arises from suppressed NO release and altered spatial density distribution, while interfacial -OH and -COOH groups consume intermediates, redirect decomposition pathways, and inhibit autocatalytic chain reactions.

View Article and Find Full Text PDF

Based on the first-principles calculations, we theoretically investigate the electronic structure, interfacial and optical properties of the tellurene/ZnSe (namely α- and γ-Te/ZnSe) van der Waals heterostructures (vdWHs). In the most stable stacking pattern, the α-Te/ZnSe vdWH exhibits an indirect band gap of 0.41 eV and forms a type-I band alignment, while the γ-Te/ZnSe vdWH possesses a p-type Schottky contact with a favorable Schottky barrier height of 0.

View Article and Find Full Text PDF

Circularly polarized luminescence (CPL) has emerged as a critical technology for anticounterfeiting and optical display applications due to its unique chiroptical properties. We report a multicolor CPL-emitting elastomeric film (P37/PSK@SiO-PDMS) that synergistically combines chiral helical polyacetylene (P37) and a surface-engineered perovskite (PSK@SiO) through hydrogen-bond-directed assembly. Confinement within the PDMS matrix drives P37 to self-assemble into a chiral supramolecular structure through hydrogen bonding, inducing a chiroptical inversion.

View Article and Find Full Text PDF

Silicon carbide (SiC) membranes combine exceptional chemical, thermal, and mechanical stability but suffer from surface inertness that precludes functionalization. Conversely, MOFs offer unmatched molecular selectivity but are typically powders, severely limiting their practical use. To address this, we develop a generalizable route to fabricate ultrastable MOF@SiC membranes via sequential oxidation and acidification, creating abundant Si-OH sites on SiC surfaces that covalently bond with Zr-MOF crystals; the bonding mechanism between MOFs and substrates has been extensively studied.

View Article and Find Full Text PDF