98%
921
2 minutes
20
Natural language-based generative artificial intelligence (AI) has become increasingly prevalent in scientific research. Intriguingly, capabilities of generative pre-trained transformer (GPT) language models beyond the scope of natural language tasks have recently been identified. Here we explored how GPT-4 might be able to perform rudimentary structural biology modeling. We prompted GPT-4 to model 3D structures for the 20 standard amino acids and an α-helical polypeptide chain, with the latter incorporating Wolfram mathematical computation. We also used GPT-4 to perform structural interaction analysis between the anti-viral nirmatrelvir and its target, the SARS-CoV-2 main protease. Geometric parameters of the generated structures typically approximated close to experimental references. However, modeling was sporadically error-prone and molecular complexity was not well tolerated. Interaction analysis further revealed the ability of GPT-4 to identify specific amino acid residues involved in ligand binding along with corresponding bond distances. Despite current limitations, we show the current capacity of natural language generative AI to perform basic structural biology modeling and interaction analysis with atomic-scale accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339285 | PMC |
http://dx.doi.org/10.1038/s41598-024-69021-2 | DOI Listing |
Clin Anat
September 2025
Department of Communication Disorders and Sciences, Rush University Medical Center, Chicago, Illinois, USA.
This research sought to examine the prevalence and severity of hyperostosis frontalis interna (HFI) in the Chicagoland anatomical body donor population. The study further aimed to elucidate potential demographic risk factors for HFI, including sex, age at death, and structural vulnerability index (SVI), as well as any common comorbidities, as gleaned from death certificates. HFI is an irregular bony overgrowth of the endocranial surface of the frontal bone.
View Article and Find Full Text PDFiScience
September 2025
School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
Deep learning has rapidly emerged as a promising toolkit for protein optimization, yet its success remains limited, particularly in the realm of activity. Moreover, most algorithms lack rigorous iterative evaluation, a crucial aspect of protein engineering exemplified by classical directed evolution. This study introduces DeepDE, a robust iterative deep learning-guided algorithm leveraging triple mutants as building blocks and a compact library of ∼1,000 mutants for training.
View Article and Find Full Text PDFBeilstein J Org Chem
August 2025
Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
Pyruvate ketal is a biologically essential moiety due to its key role as an intermediate in metabolic pathways, serving as a key precursor for the synthesis of various essential biomolecules in organisms. However, the / stereochemistry of pyruvate ketal is difficult to control through chemical methods. In this study, the acid-labile pyruvate ketal linked to the 4- and 6-positions of galactose was cautiously constructed, and the X-ray analysis of the -configured product was successfully obtained.
View Article and Find Full Text PDFJ Coll Sci Teach
March 2025
RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey, United States.
Structure-function relationships are a core concept in many STEM disciplines. Most biology curricula introduce students to macromolecules, their building blocks, and other small molecules that play key roles in biological processes. However, the shapes, interactions, and functions of these molecules are often discussed using schematic diagrams, ignoring the vast amounts of three-dimensional structural and bioinformatics data freely available from public data resources.
View Article and Find Full Text PDFBrain Commun
August 2025
Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8FJ, UK.
The cortex of the brain is covered by three meningeal layers: the dura, the arachnoid, and the pia mater. Substantial discoveries have been made demonstrating the structural and functional relationships between these layers, and with other neighbouring structures such as the skull. Importantly, improved understanding of the meningeal lymphatic network places the meninges at the nexus of a cross talk between the brain, peripheral immune system, and the skull bone marrow.
View Article and Find Full Text PDF