Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

While many computational methods accurately predict destabilizing mutations, identifying stabilizing mutations has remained a challenge, because of their relative rarity. We tested ΔΔG predictions from computational predictors such as Rosetta, ThermoMPNN, RaSP, and DeepDDG, using 82 mutants of the bacterial toxin CcdB as a test case. On this dataset, the best computational predictor is ThermoMPNN, which identifies stabilizing mutations with a precision of 68%. However, the average increase in T for these predicted mutations was only 1°C for CcdB, and predictions were poorer for a more challenging target, influenza neuraminidase. Using data from multiple previously described yeast surface display libraries and in vitro thermal stability measurements, we trained logistic regression models to identify stabilizing mutations with a precision of 90% and an average increase in T of 3°C for CcdB. When such libraries contain a population of mutants with significantly enhanced binding relative to the corresponding wild type, there is no benefit in using computational predictors. It is then possible to predict stabilizing mutations without any training, simply by examining the distribution of mutational binding scores. This avoids laborious steps of in vitro expression, purification, and stability characterization. When this is not the case, combining data from computational predictors with high-throughput experimental binding data enhances the prediction of stabilizing mutations. However, this requires training on stability data measured in vitro with known stabilized mutants. It is thus feasible to predict stabilizing mutations rapidly and accurately for any system of interest that can be subjected to a binding selection or screen.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.26738DOI Listing

Publication Analysis

Top Keywords

stabilizing mutations
28
computational predictors
12
mutations
9
prediction stabilizing
8
mutations precision
8
average increase
8
predict stabilizing
8
stabilizing
7
binding
5
computational
5

Similar Publications

Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.

View Article and Find Full Text PDF

Retinitis pigmentosa (RP) affects around 1 in 4000 individuals and represents approximately 25% of cases of vision loss in adults, through death of retinal rod and cone photoreceptor cells. It remains a largely untreatable disease, and research is needed to identify potential targets for therapy. Mutations in 94 different genes have been identified as causing RP, including AGBL5 which encodes the main deglutamylase that regulates and maintains functional levels of cilia tubulin glutamylation, which is essential to initiate ciliogenesis, maintain cilia stability and motility.

View Article and Find Full Text PDF

Several genes in the mitochondria of angiosperms are interrupted by introns, and their posttranscriptional excision involves numerous nucleus-encoded auxiliary factors. Most of these factors are of eukaryotic origin, among them members of the pentatricopeptide-repeat (PPR) family of RNA-binding proteins. This family divides into the PLS and P classes, with PLS-class proteins typically participating in C-to-U mRNA editing and P-class members contributing to transcript stabilization and intron splicing.

View Article and Find Full Text PDF

Physical and functional effects of substituting coevolved residues from Ω-loop C of yeast Iso-1-cytochrome c into human cytochrome c.

J Inorg Biochem

September 2025

Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, MT 59812, United States. Electronic address:

Omega loop C (residues 40-57) of cytochrome c (Cytc) is a common location for naturally-occurring variants of human Cytc that cause thrombocytopenia 4 (THC4). These variants are characterized by significant increases in the intrinsic peroxidase activity of Cytc, which appears to be linked to increased dynamics in Ω-loop D (residues 71-85). The mutations in Ω-loop C enhance the dynamics of Ω-loop D by decreasing the acid dissociation constant of the trigger group (pK) of the alkaline conformational transition.

View Article and Find Full Text PDF

An enigmatic tale of macrophages in bone marrow causing inflammation of the brain: A case report on CNS HLH.

Hematol Transfus Cell Ther

September 2025

Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON, Canada; Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Th

Background: Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening immune disorder characterized by excessive inflammation and multiorgan involvement. Rarely, HLH can manifest with signs and symptoms isolated to the central nervous system (CNS). This case report highlights the unique clinical course of CNS-isolated HLH in a 19-year-old female who, despite a nine-year delay in diagnosis, achieved disease remission following a hematopoietic stem cell transplant (HSCT).

View Article and Find Full Text PDF