A dendrite is a dendrite is a dendrite? Dendritic signal integration beyond the "antenna" model.

Pflugers Arch

Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neurons in central nervous systems receive multiple synaptic inputs and transform them into a largely standardized output to their target cells-the action potential. A simplified model posits that synaptic signals are integrated by linear summation and passive propagation towards the axon initial segment, where the threshold for spike generation is either crossed or not. However, multiple lines of research during past decades have shown that signal integration in individual neurons is much more complex, with important functional consequences at the cellular, network, and behavioral-cognitive level. The interplay between concomitant excitatory and inhibitory postsynaptic potentials depends strongly on the relative timing and localization of the respective synapses. In addition, dendrites contain multiple voltage-dependent conductances, which allow scaling of postsynaptic potentials, non-linear input processing, and compartmentalization of signals. Together, these features enable a rich variety of single-neuron computations, including non-linear operations and synaptic plasticity. Hence, we have to revise over-simplified messages from textbooks and use simplified computational models like integrate-and-fire neurons with some caution. This concept article summarizes the most important mechanisms of dendritic integration and highlights some recent developments in the field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711151PMC
http://dx.doi.org/10.1007/s00424-024-03004-0DOI Listing

Publication Analysis

Top Keywords

signal integration
8
postsynaptic potentials
8
dendrite dendrite
4
dendrite dendrite?
4
dendrite? dendritic
4
dendritic signal
4
integration "antenna"
4
"antenna" model
4
model neurons
4
neurons central
4

Similar Publications

Integrative profiling of lung cancer biomarkers EGFR, ALK, KRAS, and PD-1 with emphasis on nanomaterials-assisted immunomodulation and targeted therapy.

Front Immunol

September 2025

Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.

Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.

Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.

View Article and Find Full Text PDF

S-glutathionylation (SSG), a redox-sensitive post-translational modification mediated by glutathione, regulates protein structure and function through reversible disulfide bond formation at cysteine residues. Glutaredoxins (GRXs), pivotal antioxidant enzymes, catalyze SSG dynamics to maintain thiol homeostasis. Recent advances in redox proteomics have revealed that SSG dysregulation is intricately linked to neurodegenerative, cardiovascular, pulmonary and malignant diseases.

View Article and Find Full Text PDF

Hypocretin: a promising target for the regulation of homeostasis.

Front Neurosci

August 2025

Beijing Life Science Academy, Beijing, China.

Hypocretin, also known as orexin, is a hypothalamic neuropeptide that regulates essential physiological processes including arousal, energy metabolism, feeding behavior, and emotional states. Through widespread projections and two G-protein-coupled receptors-HCRT-1R and HCRT-2R-the hypocretin system exerts diverse modulatory effects across the central nervous system. The role of hypocretin in maintaining wakefulness is well established, particularly in narcolepsy type 1 (NT1), where loss of hypocretin neurons leads to excessive daytime sleepiness and cataplexy.

View Article and Find Full Text PDF

Introduction: While nucleus pulposus cell (NPC) degeneration is a primary driver of intervertebral disc degeneration (IVDD), the cellular heterogeneity and molecular interactions underlying NPC degeneration remain poorly characterized. Previous studies have shown that EGFR signaling plays a significant role in NPC differentiation and collagen matrix production. Consequently, this study aims to identify the critical downstream regulatory molecule of EGFR in the process of NPC degeneration.

View Article and Find Full Text PDF

Metabolic interplay of SCFA's in the gut and oral microbiome: a link to health and disease.

Front Oral Health

August 2025

Conservative Dentistry and Endodontics, AB Shetty Memorial Institute of Dental Sciences, Nitte (deemed to be) University, Mangalore, India.

Short-chain fatty acids (SCFAs), primarily acetate (C2), propionate (C3), and butyrate (C4), are crucial microbial metabolites formed by the fermentation of dietary fibers by gut microbiota in the colon. These SCFAs, characterized by fewer than six carbon atoms, serve as an essential energy source for colonic epithelial cells and contribute approximately 10% of the body's total energy requirement. They are central to maintaining gut health through multiple mechanisms, including reinforcing intestinal barrier function, exerting anti-inflammatory effects, regulating glucose and lipid metabolism, and influencing host immune responses.

View Article and Find Full Text PDF