98%
921
2 minutes
20
Perovskite-inspired zero-dimensional (0D) hybrid halides exhibit impressive light emission properties; however, their potential in photovoltaics is hindered by the absence of interconnection between the inorganic polyhedra, leading to acute radiative recombination and insufficient charge separation. We demonstrate that incorporating closely-spaced dissimilar polyhedral units with minimal structural distortion leads to a remarkable enhancement in visible-light photodetection capability. We designed 0D CHNInBr (HIB) with a tetragonal crystal system, replacing the Cs of CsInBr.HO (CIB) with 1,6-hexanediammonium (HDA) cation. HIB comprises [InBr] octahedra, and [InBr] tetrahedra units spaced 3.9 Å apart by the HDA linker. The [InBr] unit is additionally linked to HDA via intercalated bromine through hydrogen and halogen bonding interactions, respectively. This structural arrangement lowers the dielectric confinement, thereby enhancing carrier density and mobility, and increasing the diffusion coefficient compared to CIB. With 3.6 % bromine vacancy within the [InBr] block, mid-gap states are created, reducing the direct band gap to 2.19 eV. HIB demonstrates an unprecedently high responsivity of 9975.9±201.6 mA W under 3 V potential bias at 485 nm wavelength, among low-dimensional hybrid halides. In the absence of potential bias, the self-powered photodetection parameters are 81.2±3.0 mA W and (6.98±0.21)×10 Jones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202412779 | DOI Listing |
Small
September 2025
Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physic
Antimony selenide (SbSe), a narrow-bandgap semiconductor with strong light absorption, exhibits photoresponse up to ≈1050 nm due to its intrinsic 1.15 eV bandgap. To extend detection into the near-infrared (NIR, 700-1350 nm), Bi-alloyed (BiSb)Se is developed via vacuum sputtering and postselenization.
View Article and Find Full Text PDFSmall Sci
September 2025
Infrared photodetectors are crucial for autonomous driving, providing reliable object detection under challenging lighting conditions. However, conventional silicon-based devices are limited in their responsivity beyond 1100 nm. Here, a scallop-structured silicon photodetector integrated with tin-substituted perovskite quantum dots (PQDs) that effectively extends infrared detection is demonstrated.
View Article and Find Full Text PDFACS Nano
September 2025
College of Physics, Donghua University, Shanghai 201620, China.
Broadband anisotropic photodetectors show great promise for polarization-sensitive imaging and multispectral optoelectronic systems yet face critical challenges in material anisotropy modulation and broadband sensitivity. Weyl semimetals exhibit giant optical anisotropy and tunable heterojunction band alignment, enabling high-performance anisotropic photodetection. Herein, ultrabroadband PDs based on the NbNiTe (niobium nickel telluride), enabled by antenna integration and heterostructure engineering, achieve high sensitivity from visible to Terahertz (THz).
View Article and Find Full Text PDFSci Bull (Beijing)
August 2025
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China. Electronic address:
Determining the number of photons in an incident light pulse at room temperature is the ultimate goal of photodetection. Herein, we report a plasmon-strain-coupled tens of photon level phototransistor by integrating monolayer MoS on top of Au nanowire (NW). Within this structure, Au NW can greatly enhance incident light intensity around MoS, and the large tensile strain can reduce the contact energy barrier between MoS and Au NW, so as to achieve efficient injection of plasmonic hot electrons into MoS.
View Article and Find Full Text PDFSci Rep
September 2025
Faculty of Physics, University of Tabriz, Tabriz, 51665-163, Iran.
Recent advances in nanostructured photodetectors have enabled precise control over light absorption while minimizing photon losses. In this work, we demonstrate a plasmonic metamaterial absorber based on two-dimensional MXene (Ti₃C₂Tₓ) featuring geometrically tunable tetragram-shaped arrays. Through finite-difference time-domain (FDTD) simulations and structural optimization, we achieved over 90% photon absorption across the broadband spectral range of 1000-2500 nm, representing a significant enhancement in operational bandwidth.
View Article and Find Full Text PDF